基元的概念
基元泛指图像中有特点的单元。常说的基元有:边缘、角点、斑点、直线段、圆、等
基元检测是图像分析的基础
基元检测是图像分析的基础
边缘(Edge)检测
边缘是图像中像素灰度值发生剧烈变化而不连续的结果
边缘是赋予单个像素的一种性质,与图像函数在该像素的一个邻域内的梯度特性相关
边缘幅值:梯度的幅值
边缘方向:梯度方向旋转-90度
边缘是赋予单个像素的一种性质,与图像函数在该像素的一个邻域内的梯度特性相关
边缘幅值:梯度的幅值
边缘方向:梯度方向旋转-90度
边缘检测既是常见基元检测的基础,也是基于边界的图像分割的第一步。
边缘检测算法
斑点(Blob)检测
斑点:与周围灰度有一定差别的区域
【OpenCV】Blob特征检测算子
- 面部的雀斑
- 卫星照片中的一棵数
- 钢材X光照片中的杂质或气泡
- 医学图像中的细微肿块
斑点检测算法
【OpenCV】LoG算子:SIFT算法【OpenCV】Blob特征检测算子
角点(Conner)检测
角点:物体的拐角、交叉点、 曲线上曲率最大的点等
角点的邻域是图像中信息比较丰富的区域
角点的邻域是图像中信息比较丰富的区域
角点检测方法
- 基于边缘的方法:在小邻域内有两个不同的主边缘方向,实际图像中,孤立点、线段端点也会有类似特性。缺点是:1)需要先提取边缘并编码,计算量大;2)局部变化对稳定性影响大。
- 基于灰度的方法:计算点的曲率和梯度,目前的主流
角点检测算法:
哈夫变换-几何形状检测
基本哈夫变换:直线检测
点–线对偶性:直线所在的图像空间(记为XY)和参数空间PQ(p斜率,q截距)之间的一一映射
XY空间中的直线检测就等同于PQ空间的点检测
XY空间中的直线检测就等同于PQ空间的点检测
基本哈夫变换:曲线检测
对于任意能够用f(x,c)=0(其中x是图像点坐标矢量,c是参数矢量)表示曲线或目标轮廓,均可用类似的方法检测,只是计算复杂度随着c维数的增加而增加,需要考虑降维
广义哈夫变换:目标检测
问题:待检目标不是参数化曲线(如正方形),而只是一组轮廓点,希望自动检测目标的存在及其中心参考点(p,q)
广义哈夫变换能够检测到特定目标的位置(即参考点(p,q) ),或者说任意位置的待检目标都是可以发现的,满足平移不变性
多尺度检测
万物都有其合适的尺度
尺度空间(Wikin’83):用一列单参数、宽度递增的高斯滤波器将原始信号滤波而得到的一组低频信号;高斯核是实现尺度变换的唯一变换核,具有多种优良性质,不会引入假信号
- 原子和基本粒子:普朗克常数
- 集成电路:微米、纳米
- 人、车、树、建筑:米-厘米-毫米
- 地理:千米
- 太空:光年
多分辨率 与 尺度空间
多分辨率( 图像金字塔):(低通滤波)再下采样,多级进行形成金字塔;可能出现假结构.尺度空间(Wikin’83):用一列单参数、宽度递增的高斯滤波器将原始信号滤波而得到的一组低频信号;高斯核是实现尺度变换的唯一变换核,具有多种优良性质,不会引入假信号