淘宝定制手机:移动电子商务战略及其背后

几年前,当老百姓在电视上看到阿里巴巴和淘宝的广告时,都会忍不住给出两个问句。按语法来划分,第一句叫做疑问句:“阿里巴巴(或淘宝)到底是干嘛的?”当得知答案之后,马上第二个的反问句就跟着来了:“在中国,电子商务能成功吗?”

马云和他的团队很好的回答了这两个问题——2009年淘宝的业绩相对前年翻了一番,在金融海啸的背景之下轻松跨过了2000亿大关,在国内零售市场中的市场份额占比逐步提高;“大淘宝”战略也初见成效,除了吸引外包电子商务供应商加入“淘宝合作伙伴计划”之外,还联合手机厂商和通信运营商推出了淘宝定制手机,中国电信成为淘宝的第一家合作运营商伙伴。

尽管目前淘宝定制手机只有三个款式,但一经推出就马上受到淘宝用户的热捧,特别是淘宝卖家更将之作为征战电子商务战场的利器。淘宝定制手机的推出彰显了淘宝进军移动电子商务市场的信心和决心,在丰富的电子商务运营经验、强大的品牌号召力和巨大的市场前景的拉动下,淘宝定制手机已经注定必将成就一番作为。淘宝定制手机的“实时性”和“随时随地”让淘宝卖家和买家能够挣脱网线的“束缚”更加自由的交易,但淘宝的“野心”恐怕远远不止于此。笔者认为:淘宝定制手机的推出只是淘宝移动电子商务战略的“先头部队”而已,借着淘宝定制手机的“东风”,淘宝完全可以在这片方兴未艾的市场上占据更多的“地盘”。

l 移动电子商务模式的领导者

在国内传统的电子商务市场中,淘宝网(B2C)和阿里巴巴(B2B)的领导地位目前看起来是无可动摇的。特别是2009年淘宝打通了淘宝网和阿里巴巴之后,B2B2C的价值链条已经基本成型,其他竞争者想要赶上或超越淘宝恐怕非常力所能及。

但在移动电子商务市场、或者说是在移动互联网市场上,淘宝却不得不面临着中国移动、中国电信和中国联通三巨头的虎视眈眈。中国移动针对旗下用户推出了e100移动商城之后,中国电信和中国联通的网上商城也相继宣布开业。以中国移动商城为例,尽管目前商品数、用户数、交易额等指标较之淘宝还相去甚远,但中国移动强大的实力和近6亿的用户毕竟是不容小觑的,再加上简单便利的手机支付模式,对于淘宝而言总是一个潜在的威胁。

两会期间中国移动推出了一个重大举措——以收购浦发银行股份的方式切入金融领域,笔者认为,中国移动并不是想借此经营银行业务,而是为了接下来移动支付体系的进一步完善奠定金融基础。由于目前中国移动的手机支付仅采用话费账户结算,一方面支付额度不高在一定程度上遏制了用户的消费天性和消费积极性,另一方面也存在结算复杂、欠费风险等隐患,不利于未来移动电子商务市场的长足发展。中国移动此举对中国电信和中国联通这两个传统意义上的主要竞争对手而言威胁不大,但对于互联网电子商务的领先者们来说却很有可能会动了他们的“奶酪”。

对此淘宝不可能再继续坐拥现有优势而静观其变,进攻往往就是最好的防守策略。淘宝WAP版本、手机旺旺淘宝联合中国电信试水移动电子商务,是期望能够在新市场方兴未艾之时能够抢占先机,将原有的优势进一步延伸并争取尽早站稳脚跟。可以预见的是,如果战略推进顺利的话,淘宝对“龙头老大”这把交椅自然会是当仁不让。

l 移动电子支付

如果说中国移动收购浦发银行股份是试图打通移动支付的金融环节,对于拥有成熟、稳定而且被广大用户认可的支付宝服务的淘宝来说,则是期望借此扫平支付手段、交易手段乃至移动电子商务营销手段上的障碍。

由于互联网的开放性,淘宝在互联网上的扩张是不需要考虑“进入”和“渠道”的问题的;但由于通信市场的寡头垄断格局,淘宝想要在移动电子商务市场上另起炉灶显然是不现实的,“借道”中国电信和淘宝定制手机、跑的还是信息通道和金融通道这两架“马车”。市场信息方面好解决,如果淘能够顺利打通支付宝从互联网支付到移动互联网支付的通道,淘宝在移动电子支付领域续写传奇也不会让人感到意外。

l 移动应用商场

苹果App Store的大获成功让很多人始料不及,中国移动的Mobile Market、中国电信的天翼空间和联通的Uni store也同样满怀信心。根据Gartner的分析预测,2010年的移动应用下载量将达到80亿次,营收达到42亿美元;2013年下载量将达到216亿次,营收达到295亿美元。由此可见移动应用商场的前景广阔,聪明的淘宝自然不会错过。

淘宝定制手机也将包含“数字商城”业务,淘宝的宣传口径是“游戏、软件、电子书……应有尽有”,苹果公司在移动应用和数字内容方面的巨大成功,也让“淘宝合作伙伴计划”的一众盟友看到了美好的愿景。尽管目前淘宝还是承诺“数字商城”免费,但一旦业务成熟转入收费运营、再配合上淘宝成熟的运营经验和支付系统,其潜力将是不可估量的。

l 业务即服务

有人开玩笑说,淘宝上除了贩卖和人口之外要什么有什么。但淘宝上的商品并不是淘宝生产的,马云和他的团队卖的不是商品(当然也不是寂寞),而是服务——打通买卖双方的信息和资金通道的服务,交易的双方其实都在使用淘宝的服务并直接或间接的向淘宝支付相应的费用。

我们都知道,服务也是通过渠道来承载的。互联网的普及让淘宝在PC上无处不及,但手机上还相对薄弱,培养客户使用淘宝定制手机是今后肩负的重要任务之一。另外,服务是可以通过叠加和扩展来获得增值的(当然受益也会相应的增值),在PC上提供服务的实时性显然不如通过手机终端随时随地的面向客户来得直接快捷。短信服务当然也能够做到这一点,但由于短信所承载的信息量实在有限,在时间就是金钱、效率就是生命的今天,如果交易各方能够通过事先植入的手机客户端来获取信息并处理资金流动,这种服务的前景可想而知——而对于淘宝来说,交易信息、资金平台都是现成的,怎么让客户“移动”起来才是他们的第一要务。

一方面通信市场的三大巨头都在加紧移动电子商务的推进步伐,另一方面淘宝已经携淘宝定制手机悄然杀到。当某一天淘宝以领导者的姿态站在三大运营商的面前时,希望我们不会感到太讶异。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值