用天文方法计算日月合朔(新月)

本文详细介绍了如何运用ELP-2000/82月球运行理论来计算日月合朔时间,涉及到月球黄经、黄纬的计算方法及牛顿迭代法求解合朔精确时刻。通过这些理论和算法,可以为制定农历历法提供关键数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中国农历的朔望月是农历历法的基础,而朔望月又是严格以日月合朔发生的那一天作为月首,因此日月合朔时间的计算是制定农历历法的关键。本文将介绍ELP-2000/82月球运行理论,以及如何用ELP-2000/82月球运行理论计算日月合朔时间。

要计算日月合朔时间,首先要对日月合朔这一天文现象进行数学定义。朔望月是在地球上观察到的月相周期,平均长度约等于29.53059日,而恒星月(天文月)是月亮绕地球公转一周的时间,长度约27.32166日。月相周期长度比恒星月长大约两天,这是因为在月球绕地球旋转一周的同时,地球还带着它绕太阳旋转了一定的角度的缘故,所以月相周期不仅与月球运行有关,还和太阳运行有关。日月合朔的时候,太阳、月亮和地球三者接近一条直线,月亮未被照亮的一面对着地球,因此地球上看不到月亮,此时又被称为新月。图(1)就是日月合朔天文现象的示意图:

[img]https://img-my.csdn.net/uploads/201211/25/1353855249_4368.gif[/img]

图(1)日月天文现象示意图



月亮绕太阳公转的白道面和地球绕太阳公转的黄道面存在一个最大约5°的夹角,因此大多数情况下,日月合朔时都不是严格在同一条直线上,不过也会发生在同一直线的情况,此时就会发生日食。图(1-b)显示了日月合朔时侧切面上月亮的三种可能的位置情况,当月亮处在位置2时就会发生日食。由图(1)可知,日月合朔的数学定义就是太阳和月亮的地心视黄经差为0的时刻。

要计算日月合朔,需要知道太阳地心视黄经和月亮地心视黄经的计算方法。“日历生成算法”系列的第三篇《用天文方法计算二十四节气》一文已经介绍了如何用VSOP82/87行星理论计算太阳的地心视黄经,本文将继续介绍如何用ELP-2000/82月球理论计算月亮的地心视黄经。ELP-2000/82月球理论是M. Chapront-Touze和J. Chapront在1983年提出的一个月球位置的半解析理论,和其它半解析理论一样,ELP-2000/82理论也包含一套计算方法和相应的迭代周期项。这套理论共包含37862个周期项,其中20560个用于计算月球经度,7684个用于计算月球纬度,9618个用于计算地月距离。但是这些周期项中有很多都是非常小的值,例如一些计算经纬度的项对结果的增益只有0.00001角秒,还有一些地月距离周期项对距离结果的增益只有0.02米,对于精度不高的历法计算,完全可以忽略。

有很多基于ELP-2000/82月球理论的改进或简化理论,《天文算法》一书的第四十五章就介绍了一种改进算法,其周期项参数都是从ELP-2000/82理论的周期项参数转换来的,忽略了小的周期项。使用该方法计算的月球黄经精度只有10”,月亮黄纬精度只有4”,但是只用计算60个周期项,速度很快,本文就采用这种修改过的ELP-2000/82理论计算月亮的地心视黄经。这种计算方法的周期项分三部分,分别用来计算月球黄经,月球黄纬和地月距离,三部分的周期项的内容一样,由四个计算辐角的系数和一个正弦(或余弦)振幅组成。计算月球黄经和地月距离使用正弦表达式求和:A * sin(θ),计算月球黄纬用余弦表达式求和:A * cos(θ),其中辐角θ的计算公式是:

θ = a * D + b * M + c * M’ + d * F (4.1式)



4.1式中的四个辐角系数a、b、c和d由每个迭代周期项给出,日月距角D、太阳平近地角M、月亮平近地角M’以及月球生交点平角距F则分别有4.2式-4.5式进行计算:



D &#
### 正确实例化和调用 Verilog 模块的方法 在 Verilog 中,模块的实例化是一个重要的概念。它指的是将已定义好的模块嵌入到其他模块中以实现特定功能的过程。需要注意的是,在 Verilog 的术语体系中,“调用”并不适用于描述这一过程;更准确的说法是“实例化”。以下是关于如何正确实例化一个模块的关键点: #### 1. 基本语法结构 当需要在一个模块内部使用另一个已经定义好的模块时,可以通过以下方法完成实例化操作: ```verilog // 定义目标模块(假设为adder) module adder ( input wire a, input wire b, input wire cin, output reg s, output reg cout ); always @(*) begin {cout, s} = a + b + cin; end endmodule // 实例化该模块 module top_module(); wire a, b, cin, s, cout; // 使用端口位置匹配法进行实例化 adder instance_name (.a(a), .b(b), .cin(cin), .s(s), .cout(cout)); initial begin // 测试代码省略... end endmodule ``` 上述代码展示了如何通过显式的端口名称绑定来实例化 `adder` 模块[^1]。 #### 2. 端口连接方式 Verilog 提供两种主要的方式来进行端口连接: - **基于位置的连接**:按照声明顺序依次对应参数。 - **基于名字的连接**:明确指定每个实际参数对应的形参名称。 推荐采用后者,因为它更加直观且易于维护。例如: ```verilog adder u_adder_instance ( .a(top_a), .b(top_b), .cin(top_cin), .s(top_s), .cout(top_cout) ); ``` 这种方式不仅提高了可读性,还减少了因错误排列而导致的功能异常风险[^5]。 #### 3. 复杂场景下的应用——Generate For 循环 如果存在大量相同类型的组件需要被集成进来,则可以利用 `generate-for` 结构简化书写流程。下面的例子演示了创建 N 个独立工作的加法器的情况: ```verilog genvar i; generate for(i=0;i<N;i=i+1)begin : ADDER_GEN adder u_adders( .a(data_in[i][0]), .b(data_in[i][1]), .cin(0), .s(sum_out[i]), .cout() ); end endgenerate ``` 这里运用到了 `genvar` 类型变量作为循环计数器,并借助 `generate...endgenerate` 构造实现了动态生成多个同类型实例的目的[^2]。 #### 总结 综上所述,理解并掌握 Verilog 中模块实例化的技巧对于构建复杂的数字系统至关重要。无论是基础的一对一映射还是高级别的批量部署方案,都需要严格遵循相应的语法规则以确保最终设计能够正常运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值