并发环境下Double-check模型的改进


扩展阅读

http://www.51myit.com/thread-45338-1-1.html

public class Singleton {

private static Singleton instance = null;

public static Singleton getInstance() {
if (instance == null) {
synchronized (Singleton.class) {
if (instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}

简单场景:
多线程环境,每个线程携带惟一的key去组装数据,相同的key会有相同的数据结果。为了提高响应速度,在线程访问的入口处设置缓存。线程根据key先从缓存中取数据,如果缓存中没有,线程就去做具体的逻辑处理。

模型如下图:假定每个线程的key如A, B等,同时有多个携带同一key的线程进来。



最基本的处理方式如此:


Java代码 复制代码 收藏代码
  1. privatestaticMap<String,Object>cache
  2. =newConcurrentHashMap<String,Object>();
  3. //Entry
  4. publicObjectrun(Stringkey){
  5. Objectresult=cache.get(key);
  6. if(result==null){
  7. result=doHardWork(key);
  8. cache.put(key,result);
  9. }
  10. returnresult;
  11. }
  12. privateObjectdoHardWork(Stringkey){
  13. Objectresult=null;
  14. //Concretework
  15. returnresult;
  16. }
private static Map<String, Object> cache = new ConcurrentHashMap<String, Object>(); //Entry public Object run(String key) { Object result = cache.get(key); if (result == null) { result = doHardWork(key); cache.put(key, result); } return result; } private Object doHardWork(String key) { Object result = null; //Concrete work return result; }
它的缺点很明显,同时会有多个相同key的线程在做事,资源浪费严重。

先看段使用Double-check模式来完成相同功能的代码:

Java代码 复制代码 收藏代码
  1. privatestaticMap<String,Object>cache
  2. =newConcurrentHashMap<String,Object>();
  3. publicObjectrun(Stringkey){
  4. Objectresult=cache.get(key);//Firstchecking
  5. if(result==null){
  6. synchronized(cache){
  7. result=cache.get(key);//Secondchecking
  8. if(result==null){
  9. result=doHardWork(key);
  10. cache.put(key,result);
  11. }
  12. }
  13. }
  14. returnresult;
  15. }
  16. privateObjectdoHardWork(Stringkey){
  17. Objectresult=null;
  18. //Concretework
  19. returnresult;
  20. }
private static Map<String, Object> cache = new ConcurrentHashMap<String, Object>(); public Object run(String key) { Object result = cache.get(key);//First checking if (result == null) { synchronized (cache) { result = cache.get(key);//Second checking if (result == null) { result = doHardWork(key); cache.put(key, result); } } } return result; } private Object doHardWork(String key) { Object result = null; //Concrete work return result; }
假定某个线程T1的参数是A,如果它能从Cache中取到之前A的执行结果,就立马返回。否则在同步块外等待,期望此时在同步块中有另外一个参数也是A的线程T2正在运行,然后将运行结果放入缓存中,在T2执行完成退出同步块后,T1可以从Cache读取T2的执行结果,退出请求。Double-check模型有两次对Cache内容的check,一次在同步块外,一次在同步块里面。它的执行流程如图:


系统初始时,假定有30个参数,每个参数有10个请求线程,那么同时会有300个线程从Cache中读数据,在没有读到任何数据时,只会有一个线程进入同步块,其它299个线程在外面等着。Double-check的好处在于,每个参数第一个进入同步块的线程才会去执行正式逻辑,其它拥有同样参数的线程只要从Cache中取数据即可,效率很高。如果参数A的某个线程之前执行过,其它参数A的线程在进入同步块后,能从Cache中取到数据,立马退出同步块。但同时它的缺点就是因为有同步块的存在,每个参数的第一个线程不能并行进入具体逻辑执行过程,得一个一个的来。如此30个参数,每个参数的第一个线程得依次串行进入具体逻辑。

对于这样的应用场景,最好的流程是:相同参数的线程只有一个进入具体逻辑,其它线程等待这个参数的执行结果,在得到结果后,直接返回;不同参数的线程在具体逻辑阶段可以并发执行。期望的执行流程如下图:




这篇帖子的目的是改进Double-check模型的这种缺点,但不是修改Double-check来满足需求。实现可以很简单,一是多个线程的数据共享,二是对于同样参数多个线程的通知。具体模型如下图:


从代码来看:
Java代码 复制代码 收藏代码
  1. /**
  2. *用来标识当前参数有线程正在做具体逻辑
  3. */
  4. publicstaticObjectlock=newObject();
  5. /**
  6. *假定参数为'A',系统初始时检查lockMap中‘A’的value是否为null,如果为null,那当前线程就得做具体逻辑,把'A'的value设置为固定的lock,其它线程看到有这个lock就什么事也不做,然后suspend。当有返回数据时,将value由lock替换为正式返回数据,以在多个线程间共享
  7. */
  8. rivateMap<String,Object>lockMap
  9. =newConcurrentHashMap<String,Object>();
  10. /**
  11. *所有suspend的线程都要在这里注册,以便随后得到通知
  12. */
  13. privateMap<String,List<Thread>>caller=newConcurrentHashMap<String,List<Thread>>();
/** * 用来标识当前参数有线程正在做具体逻辑 */ public static Object lock = new Object(); /** * 假定参数为'A',系统初始时检查lockMap中‘A’的value是否为null,如果为null,那当前线程就得做具体逻辑,把'A'的value设置为固定的lock,其它线程看到有这个lock就什么事也不做,然后suspend。当有返回数据时,将value由lock替换为正式返回数据,以在多个线程间共享 */ private Map<String, Object> lockMap = new ConcurrentHashMap<String, Object>(); /** * 所有suspend的线程都要在这里注册,以便随后得到通知 */ private Map<String, List<Thread>> caller = new ConcurrentHashMap<String, List<Thread>>();

它的方法有:
Java代码 复制代码 收藏代码
  1. /*
  2. *返回值是lock时,做具体逻辑,返回值不为lock时,是真正的返回数据,线程得到这个数据,直接返回
  3. */
  4. publicObjectrunOrWait(Stringkey);
  5. /*
  6. *做具体逻辑的那个线程在做完事后,需要把result写入共享空间,让其它线程看到。然后通知所有注册这个参数的线程知道
  7. */
  8. publicvoidreleaseLock(Stringkey,Objectresult)
/* *返回值是lock时,做具体逻辑,返回值不为lock时,是真正的返回数据,线程得到这个数据,直接返回 */ public Object runOrWait(String key); /* *做具体逻辑的那个线程在做完事后,需要把result写入共享空间,让其它线程看到。然后通知所有注册这个参数的线程知道 */ public void releaseLock(String key, Object result)

具体程序见附件,里面有一个测试类,用来模拟测试Case。然后列举了以上出现的几种cache Demo。这个程序只是用来验证这个处理策略,对于细节问题,值得商榷,欢迎提出意见,十分感谢!
  • 大小: 17 KB
  • 大小: 18.7 KB
  • 大小: 20.4 KB
  • 大小: 51.4 KB
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值