Box Game
Input: Standard Input
Output: Standard Output
There are two identical boxes. One of them contains n balls, while the other box contains one ball.
Alice and Bob invented a game with the boxes and balls, which is played as follows:
Alice and Bob moves alternatively, Alice moves first. For each move, the player finds out the box
having fewer number of balls inside, and empties that box (the balls inside will be removed forever),
and redistribute the balls in the other box. After the redistribution, each box should contain at least one
ball. If a player cannot perform a valid move, he loses. A typical game is shown below:
When both boxes contain only one ball, Bob cannot do anything more, so Alice wins.
Question: if Alice and Bob are both clever enough, who will win? Suppose both of them are very
smart and always follows a perfect strategy.
Input
There will be at most 300 test cases. Each test case contains an integer n (2<=n<=109) in a single line.
The input terminates by n=0.
Output
For each test case, print a single line, the name of the winner.
Sample Input
2
3
4
0
Output for Sample Input
Alice
Bob
Alice
Problemsetter: Rujia Liu, Special Thanks: Yiming Li & Jane Alam Jan
题意:
给出 n,代表有一个筐子有 n 个球,另一个筐子有 1 个球。游戏由 Alice 开始,每次先把两个筐子中小的球取出来,再将另一个筐子中的球分任意个到另一个筐子中。如果当遇到不能取出球的情况,则另一个人为赢。输出最后赢的人。
思路:
规律。当遇到偶数的时候,则那个人就会赢,所以每次分出去的一定要是个偶数。所以如果是偶数的话,绝对会是 Alice 赢。所以考虑奇数的情况。
3 -> B 相反赢
5 -> A 本身赢
7 -> B 相反赢
9 -> A 本身赢
11 -> A 本身赢
13 -> A 本身赢
15 -> B (可以分的情况为 2 - 13,4 - 11, 6 - 9,因为这几种情况都是本身赢,分出去之后先权就轮到了 Bob,所以就是 Bob 赢)……
类似情况继续讨论,就会得到,Bob 会在 ai = ai-1 X 2 + 1 赢。
AC:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int main() {
int n;
while (~scanf("%d", &n) && n) {
if (n % 2) {
while (n > 10) {
--n;
if (n % 2) break;
n /= 2;
}
if (n ==3 || n == 7) puts("Bob");
else puts("Alice");
} else puts("Alice");
}
return 0;
}