[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题

作者: jillzhang

联系方式:jillzhang@126.com

C语言和C#语言中,对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用 32bit,double数据占用64bit,我们在声明一个变量float f= 2.25f的时候,是如何分配内存的呢?如果胡乱分配,那世界岂不是乱套了么,其实不论是float还是double在存储方式上都是遵从IEEE的规范的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53。

无论是单精度还是双精度在存储中都分为三个部分:

1. 符号位(Sign) : 0代表正,1代表为负
2. 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储
3. 尾数部分(Mantissa):尾数部分

其中float的存储方式如下图所示:

[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松

而双精度的存储方式为:



[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松

R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25*[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松,而120.5可以表示为:1.205*[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松, 这些小学的知识就不用多说了吧。而我们傻蛋计算机根本不认识十进制的数据,他只认识0,1,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,我靠,不会连这都不会转换吧?那我估计要没辙了。120.5用二进制表示为:1110110.1用二进制的科学计数法表示1000.01可以表示为1.0001*[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松,1110110.1可以表示为1.1101101*[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松,任何一个数都的科学计数法表示都为1.xxx*[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松, 尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了 24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据 127,下面就看看8.25和120.5在内存中真正的存储方式。

首先看下8.25,用二进制的科学计数法表示为:1.0001*[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松

按照上面的存储方式,符号位为:0,表示为正,指数位为:3 127=130 ,位数部分为,故8.25的存储方式如下图所示:

[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松

而单精度浮点数120.5的存储方式如下图所示:

[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松

那么如果给出内存中一段数据,并且告诉你是单精度存储的话,你如何知道该数据的十进制数值呢?其实就是对上面的反推过程,比如给出如下内存数据:0100001011101101000000000000,首先我们现将该数据分段,0 10000 0101 110 1101 0000 0000 0000 0000,在内存中的存储就为下图所示:

[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松

根据我们的计算方式,可以计算出,这样一组数据表示为:1.1101101*[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松=120.5

而双精度浮点数的存储和单精度的存储大同小异,不同的是指数部分和尾数部分的位数。所以这里不再详细的介绍双精度的存储方式了,只将120.5的最后存储方式图给出,大家可以仔细想想为何是这样子的

[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松

下面我就这个基础知识点来解决一个我们的一个疑惑,请看下面一段程序,注意观察输出结果

float f = 2.2f;

double d = (double)f;

Console.WriteLine(d.ToString("0.0000000000000"));

f = 2.25f;

d = (double)f;

Console.WriteLine(d.ToString("0.0000000000000"));

可能输出的结果让大家疑惑不解,单精度的2.2转换为双精度后,精确到小数点后13位后变为了2.2000000476837,而单精度的2.25转换为双精度后,变为了2.2500000000000,为何2.2在转换后的数值更改了而 2.25却没有更改呢?很奇怪吧?其实通过上面关于两种存储结果的介绍,我们已经大概能找到答案。首先我们看看2.25的单精度存储方式,很简单 0 1000 0001 001 0000 0000 0000 0000 0000,而2.25的双精度表示为:0 100 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000,这样2.25在进行强制转换的时候,数值是不会变的,而我们再看看2.2呢,2.2用科学计数法表示应该为:将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,所以0.282=0.4,所以二进制小数第一位为0.4的整数部分0,0.4×2=0.8,第二位为 0,0.8*2=1.6,第三位为1,0.6×2 = 1.2,第四位为1,0.2*2=0.4,第五位为0,这样永远也不可能乘到=1.0,得到的二进制是一个无限循环的排列 00110011001100110011... ,对于单精度数据来说,尾数只能表示24bit的精度,所以2.2的float存储为:

[转]浮点数在计算机中存储方式与浮点(float,double)不精确问题 - Austin - 明月照青松

但是这样存储方式,换算成十进制的值,却不会是2.2的,应为十进制在转换为二进制的时候可能会不准确,如2.2,而double类型的数据也存在同样的问题,所以在浮点数表示中会产生些许的误差,在单精度转换为双精度的时候,也会存在误差的问题,对于能够用二进制表示的十进制数据,如2.25,这个误差就会不存在,所以会出现上面比较奇怪的输出结果。

本文属作者原创,只发布在博客园,希望大家在转载的时候,注明出处和作者,谢谢。

注:本文在写作过程中,参照了如下资料:

http://www.msdn.net/library/chs/default.asp?url=/library/CHS/vccore/html/_core_why_floating_point_numbers_may_lose_precision.asp

http://blog.csdn.net/ganxingming/archive/2006/12/19/1449526.aspx

Please Wait 请稍候


Why Floating-Point Numbers May Lose Precision为什么浮点数可能会丢失精度

Floating-point decimal values generally do not have an exact binary representation.浮点十进制值通常没有一个确切的二进制代表性。 This is a side effect of how the CPU represents floating point data.这是一个负面影响,如何代表的CPU浮点数据。 For this reason, you may experience some loss of precision, and some floating-point operations may produce unexpected results.出于这个原因,您可能会遇到一些损失精度,一些浮点运算可能会产生意想不到的结果。

This behavior is the result of one of the following:这种现象是由于下列内容之一:

*

The binary representation of the decimal number may not be exact.二进制代表十进制数可能不准确。
*

There is a type mismatch between the numbers used (for example, mixing float and double).有一个类型不匹配的数字之间使用(例如,混合浮动双) 。

To resolve the behavior, most programmers either ensure that the value is greater or less than what is needed, or they get and use a Binary Coded Decimal (BCD) library that will maintain the precision.要解决此问题,大多数程序员要么确保该值大于或小于所需要的,或者他们获得和使用二进制编码的十进制(声BCD )库,将保持精度。

Binary representation of floating-point values affects the precision and accuracy of floating-point calculations.二元代表性浮点值影响的精密度和准确度的浮点计算。 Microsoft Visual C uses IEEE floating-point format .微软Visual C 中使用的IEEE浮点格式 。

http://lingchuangsong.blog.163.com/blog/static/12693232201032692651894/
展开阅读全文

没有更多推荐了,返回首页