概念解释
helpburn
这个作者很懒,什么都没留下…
展开
-
机器学习——概念理解之IoU
IoU(Intersection over Union):交并比,在SSD的论文中也叫Jaccard Overlap,是一个意思。从字面意思上看是交集和并集的比值。计算方式如下图所示:IoU在目标检测算法中计算mAP的重要函数,通过计算预测值与真值框的IoU,并与一个阈值进行比较来确定预测框的正确性。...原创 2021-03-18 14:34:19 · 1365 阅读 · 0 评论 -
卷积神经网络——Faster Rcnn中的anchor和Proposal
刚开始看到anchor和Proposal的时候有一些细节搞不清楚,在这里记录一下。anchor是Proposal的基础,现有anchor以后,从 anchor中根据条件选择出来的就可以作为Proposal了(具体的筛选过程这里先不细讲了,后面单独写一篇RPN的文章介绍,主要有NMS、二分类、偏移)。Proposal后面再经过RoIPooling就可以做分类和回归了。拷贝的图片,侵删下面先介绍一下anchor的生成过程。anchor概念anchor(锚):个人理解是基于一个中心点创建出的几种大小原创 2020-11-19 16:33:14 · 8215 阅读 · 1 评论 -
机器学习——概念理解之模型量化
模型量化模型量化: 指为了达到减小模型大小、减小推理时内存占用和加快模型的推理速度等目的,将训练得到的连续取值的浮点数类型的权重转换为整形存储(一般值int8)。**为什么需要量化: ** 随着深度学习的发展,模型变得越来越庞大,这就非常不利于将模型应用到一些低成本的嵌入式系统的情况。为了解决该问题,模型量化应运而生。目的就是在损失少量精度的情况下对模型进行压缩,使模型可以应用到像手机、摄像头、机器人等嵌入设备中。...原创 2020-10-20 20:31:44 · 1919 阅读 · 0 评论 -
机器学习——概念理解之卷积、空洞卷积、深度卷积、逐点卷积、空间可分离卷积、深度可分离卷积
本文主要介绍常见的几种卷积的概念和计算方法,主要包括:卷积、空洞卷积、深度卷积、逐点卷积、空间可分离卷积、深度可分离卷积。卷积(convolution)讨论卷积之前先介绍一下相关的概念:卷积核卷积核(convolution kernel):也叫滤波器(Filter),就是一个nxn的矩阵,矩阵的成员就是我们要训练的权重值,整个图片使用一个卷积核这也就实现了共享权重。卷积核的值不需要提前设计,只需要初始化,然后通过训练进行优化,这也就是模型训练要做的事情。padding填充为了避免一些边界上的值在原创 2020-08-29 16:40:36 · 12863 阅读 · 0 评论 -
机器学习——概念理解之fine-tuning 强化学习 迁移学习
fine-tuning强化学习迁移学习原创 2020-07-09 12:19:03 · 2602 阅读 · 0 评论