本文主要介绍常见的几种卷积的概念和计算方法,主要包括:卷积、空洞卷积、深度卷积、逐点卷积、空间可分离卷积、深度可分离卷积。
卷积(convolution)
讨论卷积之前先介绍一下相关的概念:
卷积核
卷积核(convolution kernel):也叫滤波器(Filter),就是一个nxn的矩阵,矩阵的成员就是我们要训练的权重值,整个图片使用一个卷积核这也就实现了共享权重。卷积核的值不需要提前设计,只需要初始化,然后通过训练进行优化,这也就是模型训练要做的事情。
padding填充
为了避免一些边界上的值在计算时取不到会在图像的外面填充一些数据,在另一篇文章中已经介绍过了:https://blog.csdn.net/itlilyer/article/details/107288176
步长 stride
在做卷积过程中需要按照滑动窗口的方式来对整个图片的像素点进行卷积操作,步长就是每次滑动的元素个数,分为横向和纵向。
卷积计算
卷积的计算过程就是讲图像的像素点与卷积核对应位置相乘然后再将乘积相加得到的结果,这就是单步的卷积计算过程。在通过滑动窗口遍历整个图片的像素点就可以得到特征图(Feature Map)。