机器学习——概念理解之卷积、空洞卷积、深度卷积、逐点卷积、空间可分离卷积、深度可分离卷积

本文主要介绍常见的几种卷积的概念和计算方法,主要包括:卷积、空洞卷积、深度卷积、逐点卷积、空间可分离卷积、深度可分离卷积。

卷积(convolution)

讨论卷积之前先介绍一下相关的概念:

卷积核

卷积核(convolution kernel):也叫滤波器(Filter),就是一个nxn的矩阵,矩阵的成员就是我们要训练的权重值,整个图片使用一个卷积核这也就实现了共享权重。卷积核的值不需要提前设计,只需要初始化,然后通过训练进行优化,这也就是模型训练要做的事情。

padding填充

为了避免一些边界上的值在计算时取不到会在图像的外面填充一些数据,在另一篇文章中已经介绍过了:https://blog.csdn.net/itlilyer/article/details/107288176

步长 stride

在做卷积过程中需要按照滑动窗口的方式来对整个图片的像素点进行卷积操作,步长就是每次滑动的元素个数,分为横向和纵向。

卷积计算

卷积的计算过程就是讲图像的像素点与卷积核对应位置相乘然后再将乘积相加得到的结果,这就是单步的卷积计算过程。在通过滑动窗口遍历整个图片的像素点就可以得到特征图(Feature Map)。

“failed to execute job 'insert-into_default_catalog.default_database.my_sink”是一个错误消息,通常出现在使用Flink或其他分布式计算框架进行数据处理时。这个错误消息表示作业无法成功执行,并且可能有多个原因导致。 首先,检查作业的代码是否存在错误。可能存在语法错误、逻辑问题或其他错误,导致作业执行失败。查看作业的日志文件,尝试找到错误消息或异常堆栈跟踪,以确定问题所在。 其次,检查作业所需的资源是否足够。可能存在作业需要的内存、CPU或其他资源不足,导致作业无法成功执行。增加作业所需资源的配额或重新分配资源,以确保作业能够正常执行。 还有可能是由于底层数据源或目标出现了问题。检查数据源是否可用,并且提供的连接参数是否正确。同样地,检查目标是否可用,并且接收器的连接参数是否正确。如果有必要,联系相关团队或管理员以解决这些问题。 最后,检查作业的配置是否正确。作业的配置决定了作业如何执行,可能存在配置错误导致作业无法成功执行。检查作业的配置文件或相关配置选项,确保它们符合预期并且没有错误。 综上所述,“failed to execute job 'insert-into_default_catalog.default_database.my_sink”错误可能是由代码错误、资源不足、数据源或目标问题以及配置错误等多种原因导致的。通过仔细检查和排查可能的问题,可以找到并解决这个错误,使作业能够成功执行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值