卷积神经网络——Faster Rcnn中的anchor和Proposal

刚开始看到anchor和Proposal的时候有一些细节搞不清楚,在这里记录一下。
anchor是Proposal的基础,现有anchor以后,从 anchor中根据条件选择出来的就可以作为Proposal了。Proposal后面再经过RoIPooling就可以做分类和回归了。

拷贝的图片,侵删
拷贝的图片,侵删
下面先介绍一下anchor的生成过程。

anchor

概念

anchor(锚):个人理解是基于一个中心点创建出的几种大小和长宽比的框,这个中心点怎么确定呢?是根据Feature Map中每一个点在输入图片中对应的点。

anchor的创建是在Faster R-CNN的哪个阶段呢?是在backbone的输入传入RPN后首先生成anchor,然后将anchor分别给两个分支去处理,一个分支使用softmax进行二分类,判断该anchor的框内有没有物体,有则为positive,没有则为negative;另一个分支进行边框回归,使anchor的边框更接近ground truth的框,因为默认生成的anchor框与实际框还是有偏差的。最终根据两个输出加原始图片信息生成Proposal。
在这里插入图片描述

a

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值