linux下spark做集群

本文详细介绍了如何在三台服务器上部署Spark,包括环境准备(如JDK、Scala、Spark版本等)、配置文件的修改、Spark的启动和执行任务的过程。
摘要由CSDN通过智能技术生成

一、spark介绍

 是一种通用的大数据计算框架, 正如传统大数据技术Hadoop的MapReduce、 Hive引擎, 以及Storm流式实时计算引擎等. Spark主要用于大数据的计算。

二、服务器及环境准备

1、准备三台服务器

192.168.42.139 node1
192.168.42.140 node2
192.168.42.141 node3

2、环境准备

jdk1.8
scala-2.13.12
spark-3.5.0-bin-hadoop3

3、环境变量的配置

export JAVA_HOME=/usr/local/jdk1.8.0_391
export JRE_HOME=/usr/local/jdk1.8.0_391/jre
export HBASE_HOME=/usr/local/bigdata/hbase-2.5.6
export HADOOP_HOME=/usr/local/bigdata/hadoop-3.3.6
export FLINK_HOME=/usr/local/bigdata/flink-1.18.0
export SCALA_HOME=/usr/local/bigdata/scala-2.13.12
export SPARK_HOME=/usr/local/bigdata/spark-3.5.0-bin-hadoop3
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JAR_HOME/lib
export PATH=.:$JAVA_HOME/bin:$JRE_HOME/bin:$FLINK_HOME/bin:$SPARK_HOME/bin:$SCALA_HOME/bin:$HADOOP_HOME/bin:$HBASE_HOME/bin:$PYTHON_HOME/bin:$PATH

三、spark配置文件的修改

1、拷贝spark-env.sh

export SPARK_DIST_CLASSPATH=/usr/local/bigdata/spark-3.5.0-bin-hadoop3

export SPAEK_MASTER_HOST=node1

export SPARK_MASTER_PORT=7077

export SPARK_MASTER_WEBUI_PORT=8080

export SPARK_WORKER_MEMORY=1g

export SPARK_WORKER_CORES=1

export SPARK_WORKER_INSTANCES=1

export JAVA_HOME=/usr/local/jdk1.8.0_391


2、拷贝workers

node1
node2
node3

3、拷贝spark-defaults.conf

# Example:
 spark.master                     spark://node1:7077
 spark.eventLog.enabled           true
# spark.eventLog.dir               hdfs://namenode:8021/directory
 spark.serializer                 org.apache.spark.serializer.KryoSerializer
# spark.driver.memory              5g
  spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"

四、把配置好的spark拷贝到其他

...

五、启动spark

进入/usr/local/bigdata/spark-3.5.0-bin-hadoop3/sbin中执行 ./start-all.sh 

 ./start-all.sh 

六、查看启动成功后的界面

http://192.168.42.139:8080/

七、在集群下执行spark任务

 spark-submit --class org.apache.spark.examples.SparkPi  --driver-memory 1g --num-executors 1 --executor-memory 512m --executor-cores 1  ${SPARK_HOME}/examples/jars/spark-examples*.jar 100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值