求树的重心
时间限制: 1 Sec 内存限制: 128 MB题目描述
树的重心定义为树的某个节点,当去掉该节点后,树的各个连通分量中,节点数最多的连通分量其节点数达到最小值。树可能存在多个重心。如下图,当去掉点1后,树将分成两个连通块:(2,4,5),(3,6,7),则最大的连通块包含节点个数为3。若去掉点2,则树将分成3个部分,(4),(5),(1,3,6,7)最大的连通块包含4个节点;第一种方法可以得到更小的最大联通分量。可以发现,其他方案不可能得到比3更小的值了。所以,点1是树的重心。
输入
输入:第一行一个整数n,表示树的结点个数。(n<100)
接下来n-1行,每行两个数i,j。表示i和j有边相连。
输出
输出:第一行一个整数k,表示重心的个数。
接下来K行,每行一个整数,表示重心。按从小到大的顺序给出。
样例输入
7
1 2
1 3
2 4
2 5
3 6
3 7
样例输出
1
1
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int Max=100;
int N,tot,minnum=0x3f3f3f3f;
int fir[Max+5],nxt[(Max<<1)],Ans[Max+5],cnt[Max+5],sum[Max+5];
int Dp[Max+5][2],L[(Max<<1)];
bool vis[Max+5];
int max(int a,int b){return a<b?b:a;}
void getint(int &num){
char c;int fla=1;num=0;
while((c=getchar())<'0'||c>'9')if(c=='-')fla=-1;
while(c>='0'&&c<='9'){num=num*10+c-48;c=getchar();}
num*=fla;
}
void add(int a,int b){L[++tot]=b,nxt[tot]=fir[a],fir[a]=tot;}
void search(int r,int f){
vis[r]=1;
for(int i=fir[r]; i; i=nxt[i])if(L[i]!=f&&!vis[L[i]])
search(L[i],r);
cnt[r]=max(cnt[r],N-sum[r]-1);
minnum=min(minnum,cnt[r]);
++sum[r];
sum[f]+=sum[r];
cnt[f]=max(sum[r],cnt[f]);
return ;
}
int main(){
getint(N);
int a,b;
for(int i=1; i<N; ++i){
getint(a),getint(b);
add(a,b),add(b,a);
}
search(1,0);
int all=0;
for(int i=1; i<=N; ++i)if(cnt[i]==minnum)
Ans[++all]=i;
printf("%d\n",all);
for(int i=1; i<=all; ++i)
printf("%d\n",Ans[i]);
return 0;
}