[图论]------[树形结构]------树的重心

树的重心定义

树的重心也叫树的质心。对于一棵树n个节点的无根树,找到一个点,使得把树变成以该点为根的有根树时,最大子树的结点数最小。换句话说,删除这个点后最大连通块(一定是树)的结点数最小。
-------百度百科

可以类比一下物理上的重心,一个物体本来质量是不均匀的,但是在重心这个质点上就可以把这个物体视为均匀的 (口胡) 那么树的重心可以这样理解:以这个点为根节点,它的多棵子树 “尽可能平衡”。

树的重心的性质

一下性质摘抄自百度百科。

  1. 树中所有点到某个点的距离和中,到重心的距离和是最小的,如果有两个重心,他们的距离和一样。
  2. 把两棵树通过一条边相连,新的树的重心在原来两棵树重心的连线上。
  3. 一棵树添加或者删除一个节点,树的重心最多只移动一条边的位置。
  4. 一棵树最多有两个重心,且相邻。

树的重心的求法

第一种方法是根据定义求树的重心。

size[ i ]表示 i 节点的子树大小(自定义根节点),dp[ i ]表示以 i 为根节点的最大子树大小。
由于要找一个结点的最大字数,所以这个算法的过程很类似树链剖分求重儿子的过程,然后注意一点,对于一个结点u,如果把 u 作为根节点,他的子树不止包含当前(钦定了另一个根节点后)它的所有子树,还包括他的祖先的那一个分支,这一部分的大小也应该参与比较。
在这里插入图片描述
代码:

void dfs(int u, int fa)
{
	size[u] = 1;
	dp[u] = 0;
	for(int i=head[u];i;i=edge[i].next)
	{
		int v = edge[i].to;
		if(v==fa)
		    continue;
		dfs(v, u);
		size[u] += size[v];
		dp[u] = max(dp[u], size[v]);
	}
	dp[u] = max(dp[u], N-size[u]);       //上面提到的处理
	if(dp[u]<dp[ans])
	    ans = u;
}

也可以用重心性质求树的重心
利用性质:树中所有点到某个点的距离和中,到重心的距离和最小。
还是先指定一个根节点,把无根树变成有根树。size[ i ]同上。
deep[ i ]为结点 i 的深度。dis[ i ]为所有点到点 i 的距离和。

定义 subtree(x) 表示以 x 为根的子树中点的集合。显然 subtree(x)∈n

那么对于树上的非根节点 u,设它的父亲为 v。
所以转移方程 d i s [ u ] = d i s [ v ] + ( N − s i z e [ u ] ) − s i z e [ u ] = d i s [ v ] + N − 2 ∗ s i z e [ u ] dis[u]=dis[v]+(N-size[u])-size[u]=dis[v]+N-2*size[u] dis[u]=dis[v]+(Nsize[u])size[u]=dis[v]+N2size[u]
转移方程的解释:

  1. 考虑不在 subtree(x) 中的点,它们到 u 的距离和是 它们到 v 的距离和加上 (N-size[u])
  2. 而对于那些在 subtree(u) 中的点,它们到 u 的距离和就是 它们到 v 的距离和再减去 (size[u])

所以合并两式, d i s [ u ] = d i s [ v ] + N − 2 ∗ s i z e [ u ] dis[u]=dis[v]+N-2*size[u] dis[u]=dis[v]+N2size[u]

代码:

void dfs1(int u)
{
	size[u] = 1;
	for(int i=head[u];i;i=edge[i].next)
	{
		int v = edge[i].to;
		if(deep[v])
		    continue;
		deep[v] = deep[u]+1;
		dfs1(v);
		size[u] += size[v];
	}
}
void dfs(int u, int fa)
{
	dis[u] = dis[fa]+N-2*size[u];
	for(int i=head[u];i;i=edge[i].next)
	{
		int v = edge[i].to;
		if(v==fa)
		    continue;
		dfs(v, u);
	}
}

例题

模板: 洛谷P1395 会议.

找两个重心:POJ 1655 Balancing Act.

思维: CF1406C Link Cut Centroids.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值