爆肝 36 小时,关于 DeepSeek,看这一篇文章就够了!

大家好,我是微笑哥。

DeepSeek 已经成为了全球热点,因为做自媒体的原因能看到各种留言,我发现大家对 DeepSeek 的认识,千差万别差距巨大。

比如有的读者说,DeepSeek 是“水变油”骗局;有的读者说 DeepSeek 就是忽悠国外的东西;还有的说 DeepSeek 是中国国运堪比六代机,还有的说 DeepSeek 就是 AI 版本的小米等等。

既然争议这么大,那么我就用一篇文章尽量给大家解释这所有问题,好好聊一下什么是 DeepSeek,如何高效使用它,用它能做什么?

1

DeepSeek 是什么?

DeepSeek(中文名:深度求索)是一款由杭州深度求索人工智能基础技术研究有限公司开发的人工智能模型。

它的英文名“DeepSeek”可以读作“深思”(Deep)和“探索”(Seek),寓意着通过深度学习技术探索未知的领域。

它是一个比较优秀的人工智能模型,可以回答大家的各种问题,可以让大模型像人类一样思考去创作回答。

像回答问题、撰写文章,写代码、或者进行文案创作、复杂的推理,DeepSeek 都能轻松应对。

但它不是万能的,如果你随意的提问也只能拿到一些简单的回答,特别是没有勾选深度思考模型下,可能你觉得也就这样。

所以不用过度美化它,也不用贬低它,这只是一个优秀的工具,还谈不上非常“智能”或者说“无所不能”。

DeepSeek-R1 是 DeepSeeK 最新的深度推理模型,对标 OpenAI 的 OpenAI o1,而不是 GPT4o。

4e229b8ab9ff902db97f207c07a0399b.png

(表格使用 DeepSeek-R1 生成)

因为 GPT4o 是个多模态通用模型,可以理解图片、语音、视频,也可以输出语音,而 R1 目前支持相对有限。

2

DeepSeek 怎么用?

目前 DeepSeek 提供了如下使用方式:

1. 网页版:打开 https://chat.deepseek.com/ 直接使用。

2. App:手机应用市场搜索 deepseek,点击下载安装即可 。

打开 DeepSeek,聊天界面提供了三种模式——基础模型、深度思考(R1)联网搜索,可根据不同场景和需求,灵活选用。

11954228708e6aa759335912c044a8f7.png

基础模型,于去年12月升级到DeepSeek-V3版,性能比肩全球顶尖的开闭源模型(如4o、Claude-3.5-Sonnet、Qwen2.5、Llama-3.1等)。

深度思考,才是R1 模型,即现在让“硅谷震惊”的模型,因免费+开源+极低价API,让 DS 在这个春节成为“国运”级模型,爆火海内外。

a813f97b86b53ba0e4afd3dab652744b.gif

联网搜索,是根据网络搜索结果来回答问题,也就是 RAG(检索增强生成),你可以把它理解为 DeepSeek 的 AI 搜索功能。

上图最右侧的小圆圈内按钮,支持上传文档、图片等信息,但不能和联网搜索同时使用。

总结下来。

如果你只是简单的提问,使用基础模型就可以,如果需求知道推理过程或者更多深度思考,选择深度思考。

如果你检索的内容,需要在互联网上查询最新的资料,那么就勾选上互联网搜索,他会检索互联网最新内容整理后回答。

3

DeepSeek 使用技巧

如果你还在用各种"专业提示词"和"模板",那就是走错了方向,DeepSeek更像人一样的问答即可,这一招也极大降低了使用成本。

DeepSeek 是推理型 AI !

结构化的提问方式会限制AI发挥,输出机械化的内容,想要更灵活更全面的答案,就应以目标为导向,激发AI的推理能力。

这样说大家可能不理解,我这里简单对比一下,普通模型和推理模型的区别,大家就明白了。

  • 普通模型:直接报答案(可能对可能错),就像背过题的学生

  • 推理模型:会先写草稿纸,一步步算给你看,还会检查自己有没有算错

  • 普通模型:像百度百科,只能复述事实

  • 推理模型:像老师讲课,能说清楚前因后果

我总结了一份万能的使用公式,给到大家:

提问模版:
“作为【身份】,请解决【任务】,要求【细节】,用【格式】输出。”
或者
“我是XXX,要做什么XX事情,希望达到 XX效果。”

下面给大家两个示例看一下。

我向DeepSeek提问,作为市场专员,如果想了解“网红策略”的情绪倾向中,小米和理想关键词的数据对比,用了第一个提问方式。

2cf7dd1b850ae80f692938fa050c3e57.png

推理过程比较长,这里面就不粘贴了,我重点给大家摘录一下,最后分析拿到的结果。

7673297136962d99ae4a5695f7a822a2.png

用第二个提问方式,我想让 DeepSeek 给我规划一份旅行攻略

提示词:
我是一名大学生,要去西安旅游3-5天,请帮我规划西安旅行攻略,
重点推荐本地小吃,预算不要超过1万元。

f2dd6eedf4383a1f0478007fd141c33b.png

经过过一会 DeepSeek 就给我规划好了一份行程,总计花费猜不到 3000 元。

e6346c7917f3b86ffeb6a95685ceff66.png

而且作为西安本地人,我对这份行程规划很满意,基本上西安的著名景点都包含在其中了,并且路线规划也合理。

以后如果你想去哪个地方旅游,不用在网上查什么旅游攻略了,直接问 DeepSeek 就是最佳规划和路线。

我这里只是举了2个最简单的例子,我这里有两份整理好各种场景的提示词,大家如有需求可以加我微信领取。

6a275c00163aa52aec32dc94e1b66945.png

4

异常情况

由于 DeepSeek 实在是太火爆了,大家使用的时候一定会遇到提示:服务器繁忙,请稍后再试,这样的提示。

ba7a848c732a83de8fb7d2c064e53705.png

没办法,DeepSeek 是开源产品,能够支持这么多用户访问已经很艰难了,短期内这个问题都很难解决。

所以我们只能通过其它方式来绕行,比如其它部署了 DeepSeek 的服务商上使用,比如自己部署 DeepSeek等等。

我们也给大家总结了一份解决这个问题的指南,大家可以识别下方二维码加入这个免费星球查看。

93c767353de5381007572bd99ec67b2d.jpeg

对了,星球是免费的,估计今天用户就破万了,前一万用户送一份小白快速入手的 DeepSeek 使用指南!

d1ed4e3280bfff3da1e94d98bfcd52ef.jpeg

星球是一个免费交流的社群,我们会联合很多在 AI 一线奋战的朋友,给大家分享关于 DeepSeek 最新信息和教材。

星球还创建了一个配套的 DeepSeek 交流群,方便大家学习讨论最新的 DeepSeek!

如果感兴趣,请加我微信回复:666,微信通过后会拉你入群。

395c0fead22ac9f7877e405e74f8fe02.gif

5

写到最后

为了给大家写这篇文章,我肝了 36 小时。

文章里面的所有命令和功能,我都一一进行了测试,包括送大家的2个文档也是精挑细选了很多摘出来的。

大家知道我使用过是什么感受吗?

DeepSeek 是不是国运我不知道,但对于普通人来讲,真的是极大降低了使用 AI 的门槛。

日常生活问题或者发展问题,第一时间都可以找 DeepSeek 来找答案,它的准确度超过你身边90%的人。

但也不要神话它,也有出错和回答不了的内容,比如你让它给我们出一份治疗方案等等,但已经给我们带来太多的惊喜了。

相比其它大模型,DeepSeek 代表了 AI 的未来方向 —— 更懂人话,更会思考(不需要要学什么指令)。

而未来 10 年一定是 AI 大爆发的10年

我们生活中的任何事情都有可能会被 AI 重构,现在大家觉得 DeepSeek  很炸,但未来一定还有更炸裂的 AI 出来颠覆大家的认知。

这才是AI爆发的第二年,未来想象空间巨大,作为普通人不求有多了解,但至少要会使用 AI。

希望大家保持关注,未来我会持续 All In 在AI这个赛道,和大家分享使用心得和感悟

在电子设计自动化(EDA)领域,Verilog HDL 是一种重要的硬件描述语言,广泛应用于数字系统的设计,尤其是在嵌入式系统、FPGA 设计以及数字电路教学中。本文将探讨如何利用 Verilog HDL 实现一个 16×16 点阵字符显示功能。16×16 点阵显示器由 16 行和 16 列的像素组成,共需 256 个二进制位来控制每个像素的亮灭,常用于简单字符或图形显示。 要实现这一功能,首先需要掌握基本的逻辑门(如与门、或门、非门、与非门、或非门等)和组合逻辑电路,以及寄存器和计数器等时序逻辑电路。设计的核心是构建一个模块,该模块接收字符输入(如 ASCII 码),将其转换为 16×16 的二进制位流,进而驱动点阵的 LED 灯。具体而言,该模块包含以下部分:一是输入接口,通常为 8 位的 ASCII 码输入,用于指定要显示的字符;二是内部存储,用于存储字符对应的 16×16 点阵数据,可采用寄存器或分布式 RAM 实现;三是行列驱动逻辑,将点阵数据转换为驱动 LED 矩阵的信号,包含 16 个行输出线和 16 个列使能信号,按特定顺序选通点亮对应 LED;四是时序控制,通过计数器逐行扫描,按顺序控制每行点亮;五是复用逻辑(可选),若点阵支持多颜色或亮度等级,则需额外逻辑控制像素状态。 设计过程中,需用 Verilog 代码描述上述逻辑,并借助仿真工具验证功能,确保能正确将输入字符转换为点阵显示。之后将设计综合到目标 FPGA 架构,通过配置 FPGA 实现硬件功能。实际项目中,“led_lattice”文件可能包含 Verilog 源代码、测试平台文件、配置文件及仿真结果。其中,测试平台用于模拟输入、检查输出,验证设计正确性。掌握 Verilog HDL 实现 16×16 点阵字符显示,涉及硬件描述语言基础、数字逻辑设计、字符编码和 FPGA 编程等多方面知识,是学习
### DeepSeek入门教程完整介绍 #### 一、概述 DeepSeek作为一种新兴的技术解决方案,在多个领域展现出强大的潜力和广泛的应用前景。自推出以来,受到了学术界和工业界的广泛关注[^2]。 #### 二、基础概念 为了更好地理解DeepSeek的工作原理及其应用场景,《DeepSeek入门指南:从入门到精通》提供了详尽的基础理论讲解,涵盖了核心算法、架构设计等方面的知识点,适合初学者逐步建立对该系统的认知框架[^1]。 #### 三、进阶学习路径 随着对DeepSeek了解程度加深,《Deepseek赋能职场应用》2.0版本进一步拓展了读者的学习边界。书中不仅包含了更深层次的技术解析,还增加了大量贴近现实生活的案例分析,旨在引导使用者探索更多可能性并应用于具体业务场景之中[^3]。 #### 四、特色模块详解 - **职场应用案例**:精选多个行业内的成功范例,展示如何利用DeepSeek应对复杂挑战; - **技术解析升级**:结合实例进行细致入微的功能解读,助力掌握更高阶的操作技巧; - **高效工具推荐**:针对不同需求挑选最适合的辅助软件,提高整体工作效能; - **实战演练环节**:设置丰富的练习项目鼓励动手尝试,巩固所学知识点的同时积累宝贵经验。 ```python # Python代码示例用于说明如何集成某些特性(假设) import deepseek as ds def apply_deepseek_to_task(task_data): model = ds.load_model('path/to/model') result = model.predict(task_data) return process_result(result) print(apply_deepseek_to_task(sample_input)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值