目录
制作不易,点个赞再走吧
题目描述
链接:迷宫探索
来源:牛客网
在与boss的最终决战之后,小蓝来到了冒险的最后一关,在他面前有一个n*m的迷宫,迷宫中道路用’.’表示,墙壁则由‘#’表示。小蓝初始在[1,1]的位置,他只有到达[n,m]才能开启最终的宝藏。小蓝现在迫不及待的想要开启宝藏,所以他想最短的时间内走出迷宫。现在迷宫内有一种特殊的装置 –“弹射器”。弹射器的格子用’*’表示。当走到有弹射器的一格时,小蓝必须选择一个方向,弹射器会让他沿着这个方向弹射 x个距离,不同弹射器的弹射距离可以不同。弹射后的格子如果超过迷宫边界或者是墙壁则不能选择这个方向。小蓝现在可以向上下左右四个方向走,每走一个格子需要消耗一个单位时间,弹射则不消耗时间。求最短需要多少时间小蓝才能走出迷宫。如果无法到达终点,输出-1。
弹射器的数量,位置和弹射距离将在输入中给出。起点和终点一定不是弹射器。
输入描述:
第一行两个整数 n, m,接下来n行,每行m个只包含’ . ’ , ’ * ’ , ’#’的字符描绘迷宫。
接下来一行一个整数k,下面的k行每行三个整数x, y, w表示在[x,y]格子的弹射器能弹射的距离。(2≤n≤3000,2≤m≤3000, n*m≤500000, 0≤k, w在int范围内)
输出描述:
一行一个整数
输入 输出
3 2 1 .* #. .. 1 1 2 2
算法介绍
朴素dijkstra算法
Dijkstra 算法是求一个图中一个点到其他所有点的最短路径的算法,是一个基于「贪心」、「广度优先搜索」、「动态规划」求一个图中一个点到其他所有点的最短路径的算法,时间复杂度 O()
目前我了解的dijkstra算法可以解决两类问题,一种就是该题这样的,还有一种就是邻接矩阵。
要点:
每次从 「未求出最短路径的点」中 取出 距离距离起点 最小路径的点,以这个点为桥梁 刷新「未求出最短路径的点」的距离
注意:dijkstra算法不能解决负权边的问题
模板代码:
求1到n点的距离
const int N = 1000005;
int n,m,k;
int djs[N]; // 存储 1到 N这两个点之间的最短距离
bool used[N]; // 标记该该点是否已经存储好了
int w[N][N]; // 储存距离
int dijkstra()
{
memset(djs, 0x3f3f3f3f, sizeof djs);
djs[1] = 0;
for (int i = 0; i < n - 1; i ++ ) // 迭代 n 次
{
int k = -1;
for (int j = 1; j <= n; j ++ )
if (!used[j] && (k == -1 || djs[k] > djs[j]))
k = j;
for (int j = 1; j <= n; j ++ )
djs[j] = min(djs[j], djs[k] + w[k][j]);
used[k] = true;
}
if (djs[k] == 0x3f3f3f3f) return -1;
return djs[k];
}
堆优化版的dijkstra算法
因为每次查找都是找到达该点的距离最小的那个点,那么我们就可以用小根堆来实现。
在运用小根堆的时候之前要进行邻接表的处理。
模板代码:
求1到n点的距离
typedef pair<int, int> PII;
const int N = 100000;
int n,m;
int h[N], w[N], e[N], ne[N], idx; // 邻接表的模板
int djs[N];
bool used[N];
void add(int x,int y,int val) // 建立邻接表
{
e[idx] = y,w[idx] = val,ne[idx] = h[x],h[x] = idx++;
}
int dijkstra()
{
memset(djs, 0x3f, sizeof djs);
djs[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号
while (heap.size())
{
auto t = heap.top();
heap.pop();
int x = t.second, len = t.first;
if (used[x]) continue;
used[x] = true;
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (djs[j] > x + w[i])
{
djs[j] = len + w[i];
heap.push({djs[j], j});
}
}
}
if (djs[n] == 0x3f3f3f3f) return -1;
return djs[n];
}
解题思路
该题的思路就是运用dijkstra的算法进行操作,该题的思路更像的广度优先搜索,就是用该算法对该搜索进行优化。该题就是典型的dijkstra的算法,题目中写的有部分变量注释,更多细节请看代码,这里就不多说了。
代码实现
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int> PII;
typedef pair<int,PII> PIP;
priority_queue<PIP,vector<PIP>,greater<PIP>> heap;
const int N = 10006;
char str[N][N]; // 存储地图
bool used[N][N]; // 标记该点是否已经走过了
int w[N][N]; //存储 * 能弹射的距离
int dx[] = {1,-1,0,0},dy[] = {0,0,1,-1};
int n,m;
int dijkstra()
{
heap.push({0,{1,1}}); // 从第一个位置开始遍历,那么就将第一个位置直接存下来。
// heap.first 表示从第一个位置到该点位置的最短路径,heap.second 存的是该点的坐标
while(heap.size())
{
auto t = heap.top();
heap.pop();
int len = t.first, x = t.second.first,y = t.second.second; // 将该点的信息换个数据存下来
if(x == n && y == m) return len; // 如果找到这个点了,就返回这个值。
if(used[x][y]) continue; // 如果初始位置到该点的最小距离已经找到了,就跳过
used[x][y] = true;
for(int i = 0; i < 4; i++)
{
int flag = 0;
int xx,yy;
if(str[x][y] == '.')
{
flag = 1;
xx = x + dx[i],yy = y + dy[i];
}
else if(str[x][y] == '*')
{
xx = x + dx[i] * w[x][y],yy = y + dy[i] * w[x][y];
}
if(used[xx][yy]) continue;
if(xx >= 1 && yy >= 1 && xx <= n && yy <= m && str[xx][yy] != '#') // 确定下一个能走的位置
{
heap.push({len + flag,{xx,yy}});
}
}
}
return -1;
}
int main (void)
{
cin >> n >> m;
for(int i = 1; i <= n; i++)
{
cin >> str[i] + 1; // 为了使输入的初始位置为1 1
}
int t;
cin >> t;
while(t--){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
w[a][b] = c; // 将 * 能移动的位置存下来
}
int k = dijkstra();
printf("%d",k);
return 0;
}