一,伪代码:
//制作起点st
填充st.loc;//状态坐标
计算st.costed(或wined);//已支付代价(或收益)
计算st.willcost(或willwin);//预计还需支付的代价(或收益)
st.open=true;//开启
st.per=-1//前件指针
st加入list;//list保存已生成的状态
while(1)
{
找到list中open=true的节点中cost+willcost最小者(或win+willwin最大者)索引curi
list(curi).open=false;//关闭此节点
if list(curi).loc==ed.loc//如果list(curi)是终点
{
break;//计算结束
}
for 每种可用策略dec
{
//制作list(curi)以dec为转移得到的后件linstat
计算linstat.loc;
计算linstat.cosed(或wined);
计算linstat.willcost(或willwin);
linstat.open=true;
linstat.per=curi;
if linstat超出状态空间,continue;//这一句很重要,如果忘了写,会使list体积剧增
看是否存在list(i).loc==linstat.loc
if yes
{
if linstat.costed<list(i).costed(或linstat.wined>list(i).wined)
{
list(i)=linstat;//替换
}
}else
{
list.push_back(linstat);//新增节点
}
}
}
输出结果;
注:
如 果willcost=0,则A*算法变成dijkstra算法,由此可见A*算法是在dijkstra算法中加入了对未来代价的预测,从而使搜索具有一定 方向性,提高了效率。但由于不是在所有节点都关闭时才退出,而是在ed.open=false时就退出(并不能保证ed将来不会被再次刷新),所以得到的 是近似最优解。也就是说:
A*算法ed.open=false时刻要比Dijkstra算法来得早(推进速度快),但ed.open=false时刻解的质量A*算法没有Dijkstra算法的好。
A*算法
最新推荐文章于 2011-04-22 20:03:52 发布