自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 资源 (1)
  • 收藏
  • 关注

原创 C++11 VSCode 配置

配置问题VSCode 在Mac上默认为C++ 98,需要改为C++ 17在 settings 中将 cppStandard 改为 C++ 17Crtl+Shift+P在Settings.json中加入:"code-runner.executorMap": { "javascript": "node", "java": "cd $dir && javac $fileName && java $fileNameWithoutExt

2021-07-06 11:30:44 499

原创 C++ -- 四种类型转换

四种类型转换const_cast<>仅适用于指针,引用或者this指针将const类型专为非const,是四个类型转换唯一一个可以转const的static_cast<>风险性较小的转换,适用于:整形与浮点型 字符与整型 转换运算符 空指针–>其他类型指针不可以用于风险较高的转换对类进行类型转换的时候需要记得重载如:指针之间互换,指针与整型,不同类型的引用转换dynamic_cast<>只用于基类与派生类之间的指针或引用转换

2021-07-06 10:27:04 395

原创 Deep Nets Sublinear Memory Cost 笔记

Deep Nets Sublinear Memory Cost论文链接:arXiv:1604.06174Abstract设计一个算法,训练一个N层网络仅耗费O(n)O(\sqrt{n})O(n​)的内存,每个mini-batch只需要一个额外的前向计算成本,因为许多先进的模型已经达到了GPU显存的上限,需要去探索更深入更复杂的模型,推进深度学习研究的创新。这个算法专注于降低训练期间存储中间特征图和梯度的内存成本,计算图(DAG)分析用于automatic in-place operation和内存共

2021-06-04 17:54:59 760

原创 Fate试验 MBP & ECS两种方式

Fate安装 Mac & ECS1 安装前的提示分别尝试了用Mac单机和ECS上使用Docker安装,在实践的过程中出现的环境bug为:Mac因为ip改到了外网,而FATE服务器似乎需要在国内才能运行,出现了开VPN,quick_run.py运行不成功;不开VPN,纯连国内网,quick_run.py掉线,因为我的VPN端口号不在8080上,与FATE要求的8080端口号不对准,出现了掉线问题。想了想,还是用Docker来弄吧Docker注意,这里的Docker不是说你在Do

2021-06-03 12:11:26 374

原创 CSAPP(第二版) 第二章习题解答

CSAPP(第二版) 第二章习题解答2.1 二进制《–》十六机制A.将0x39A7F8转换为二进制0x39A7F80011 1001 1010 0111 1111 1000B. 二进制1100 1001 0111 1011转换为十六进制A 9 7 BC. 将0xD5E4C转换为二进制1101 0101 1110 0100 1100D. 将二进制10 0110 1110 0111 1011 0101转换为十六进制补0: 0010 0110 1110 0111 1011 010

2021-01-24 20:59:16 3304 6

原创 复习篇15章:量子论基础

好像我所想到的答案都是别人容易想到的,就算如此,就算对别人来说是简单的答案,但我也依然还是要努力挺过那段时间,到目前为止在我面前的那些挑战,面对那些大大小小的困难,努力去找出答案的时间从脑海中掠过,或许比起我在当下每一刻所找到的解决方案,答案,结果,能够不放弃坚持下来的那些时间,才是一直不变的唯一的答案文章目录15.1 热辐射 普朗克能量子假设15.1.1 热辐射<1> 单色辐射出射度(单色辐出度)15.1.2 黑体辐射<1> 举个栗子15.1.3 普朗克的能量子假设15.2 .

2020-12-06 16:17:41 481

原创 一 计算机系统基础(Ⅰ)--C语言程序举例

一 C语言程序举例Intro① ISO C90标准,32位系统的程序运行:-2147483648 < 2147483648 Falsei = -2147483648; 2147483648 > i; True-2147483648-1 < 2147483648 TrueWhy?如何理解呢?编译器如何处理字面量高级语言中的运算规则高级语言与指令之间的对应机器指令的执行过程机器级数据的表示和运算…② x, y都为int型,当x = 65535, y = x

2020-11-30 09:33:37 1751

原创 数据挖掘(一)---- PageRank算法 +缺失值补充

一 原理介绍1.1 简介PageRank(网页级别)用来衡量一个网站的好坏的唯一标准 ,在加入了诸如Title标识和KeyWords标识等所有其他因素后,在搜索结果中因网站排名获得提升,从而提高搜索结果的相关性和质量其算法的核心如下:如果一个网页被很多其他网页链接连接到的话,说明这个网页比较重要,它的PageRank值会相对较高如果一个PageRank高的网站指向另一个网站,这个被指向的网站的PageRank值也会相应提高,即一个网站的PageRank值会受到其他网址的影响示意图:

2020-07-13 15:24:59 1282

原创 支持向量机SVM在python下的使用

这里我们将简要介绍下SVM是什么,然后将做一些SVM的经典例子,其中也会结合一些其他的算法来完成这些例子我的配置:Python 3.7+, Pycharm一 SVM介绍1.1 SVM可以做什么手写数字识别目前最好的识别水平:LeNet 4(错误率<0.7%)多项式支持向量机(错误率<0.8%)性别识别通过SVM来判断是男还是女行人检测1.2 SVM的理论基础1.2.1 超平面的描述在数学中,超平面是n维欧氏空间中余维度等于1的子空间,即n维空间中的超平面使.

2020-07-12 16:31:50 1823

原创 数模学习(八)--- 图论最短路径问题

这一节简要介绍图论中的基本概念,并主要讲解图论中的最短路径问题。之后会专门开专题讨论集合论与图论哒~根据图的不同,我们在这里主要将两种最短路径的算法:迪杰斯特拉Dijkstra算法和贝尔曼-福特Bellman-Fold算法。一 基本概念1.1 Intro图论中的图是由若干给定的点以及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。一个图可以用数学语言描述为G(V(G),E(G))G(V(G),E(G))G(V.

2020-07-10 13:45:00 4797

原创 数模学习(七)--- 多元线性回归

Abstract回归分析是数据分析中最基础也是最重要的分析工具,许多数据分析的问题,都可以采用回归的思想去解决,机器学习中回归也是需要学习的很重要的内容之一;当今回归分析的任务是:通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去预测Y的目的。(感觉跟插值和拟合希望达到的目的差不多orz)常见的回归分析有五类:线性回归、0-1回归、定序回归、计数回归和生存回归,它们划分的依据是因变量Y的类型,这里我们主要讲线性回归。一 引入1.1 回归的思想1回归分析: 研究X和Y之间

2020-07-09 17:13:52 14644

原创 数模学习(六)---典型相关分析

Abstract典型相关分析(Canonical Correlation analysis)是研究两组变量(每组变量中都可能有多个指标)之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系提示:这里将涉及到多元统计的知识,在学过了主成分分析模型后再过来看比较合适一 引入1.1 举个栗子1.1.1 发现问题通过上表我们来探究观众和业内人士对一些电视节目的观点之间存在着什么关系,其中观众评分来自低学历(led)、高学历(hed)和网络(net)调查三种,他们形成第一组变量;而业内

2020-07-09 11:52:30 6024

原创 数模学习(五)---相关系数

Abstract这节将介绍两种最为常用的相关系数:皮尔逊pearson相关系数和斯皮尔曼spearman等级相关系数。它们可以用来衡量两个变量之间的相关性的大小,而根据数据满足的不同条件,我们需要选择不同的相关系数进行计算和分析(建模论文中最容易雍错的方法)。在这里,我们需要引入总体和样本这两个概念总体: 所要考察对象的全部个体叫做总体—在观察总体数据的时候,我们总是期望找到一些总体的特征(如均值方差等)样本: 从总体中所抽取的一部分个体则叫做总体的一个样本而我们通常对总体和样本进行数据处理的目

2020-07-09 01:21:47 5270

原创 数模学习(四)---拟合算法

一 Abstract与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是去寻求一个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)二 拟合算法1.1 插值与拟合算法插值: 得到的多项式f(x)f(x)f(x)需要经过所有的样本点,但是如果样本点过多,那么这个多项式的次数会过高,因而造成Runge现象拟合: 尽管可以用分段取避免插值的Runge问题,但是我们实际中更倾向于得到一个确定的曲线,虽然该曲线不能经过每一个样本点,但仅需要在

2020-07-08 14:01:11 3100

原创 数学建模(三)----插值算法

前要在数模比赛中,通常需要根据已知的数据点进行数据、模型的处理和分析,但有时候现有的数据是极少的,不足以支撑分析的进行,在这个时候我们可以通过**“模拟产生”一些新的但是又比较靠谱的值来满足需求**,这就是插值的作用一 一维插值假设已经有n+1n+1n+1个结点(xi,yi),(i=0,1,...,n)(x_{i},y_{i}),(i=0,1,...,n)(xi​,yi​),(i=0,1,...,n),其中x_{i}互不相同,不妨假设a=x0<x1<...<xn=ba=x_{0}&l

2020-07-05 15:32:38 1394

原创 数模学习(二)---Topsis法

一 概述Topsis法(逼近理想排序法)是系统工程中一种多目标决策方法,找出有限方案中的最优与最劣的方案,当某个可行解方案最靠近最优方案同时又远离最劣方案时,这个方案解的向量集就是最优影响评价指标。Topsis法其作为一种综合指标的评价方法,区别于如模糊综合评判法,层次分析法,它的主观性比较强,不需要目标函数,也不需要通过相应的检验,即限制要求大大降低,这使它的适用范围更为广泛二 Topsis影响力度算法步骤2.1统一指标类型(一般正向化指标)2.1.1 常见的四种指标总结指标名称指标

2020-07-03 15:44:14 3775

原创 数模学习(一)--AHP层次结构法

数模学习(一)—层次分析法概要:AHP常用于评价类模型,根据专家经验或者自己意见(通常是自己的awa)对不同的指标评分,再利用一致性检验的方法来判断这类评价是否合理,如果合理,我们就可以通过指标一开始的不同权重,按照从大到小的顺序清楚哪一类的指标最为重要,依据这个顺序你就可以找到影响方案的最重要因素有哪些啦。使用流程:1.确定解决问题的层次结构确定好我们的目标层(Objective),准则层(Criterion)和方案层(Plan),在这个地方论文写作需要标注好箭头,箭头的顺序是目标层—>准

2020-06-30 12:38:37 8832

JAVA入门基础.md

这个是JAVA的入门总结,是博主手敲出来的,加入了一些自己的见解,希望能给你带来帮助,其中对于Java的三大特性作了阐述和相关实战例子,感兴趣的可以边学边做

2020-07-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除