老照片变清晰GFPGAN
先来看一个效果图,这个开源项目能把模糊爆浆的老照片 1 s 内变成清晰、高清的有色照片。
而以上这些效果,无需专业 PS 技能,只用一个网页端的 Demo、点点鼠标上传图片就能搞定。
这个修复神器,由腾讯 PCG ARC 实验室研发,其相关论文已被 CVPR2021 收录,相关代码和 Demo 也登上了 GitHub 热榜,斩获 1.3K 的 Star!
地址:https://github.com/TencentARC/GFPGAN
让你的动漫视频变清晰Real-ESRGAN
该开源i项目是 视频修复算法 Real-ESRGAN 的实现,可以将模糊的画面变得清晰,并且可以进行 4 倍的超分辨率。
编程语言:Python
开源地址:https://github.com/xinntao/Real-ESRGAN
开源地址:https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan
项目简介
Real-ESRGAN-ncnn-vulkan 是基于 Real-ESRGAN 模型的优化版本,专为图像/视频超分辨率重建和修复而设计。
与传统的图像增强工具不同,它利用深度卷积神经网络,通过纯合成数据训练模型,大幅提升了对复杂噪声和压缩失真图像的处理能力。
简单来说,它能智能分析图像细节,自动填补缺失信息,实现高质量的“去模糊”效果。
技术亮点
① 高效推理与跨平台支持
项目基于 NCNN(腾讯开源的神经网络推理框架)和 Vulkan 图形API开发,支持 Windows、Linux 和 macOS 系统。
Vulkan的 并行计算能力让处理速度更快,即使是低配设备也能流畅运行。
② 实用性优先的算法设计
相比学术化的超分辨率模型,Real-ESRGAN 更注重实际场景的修复效果。例如,它能处理因 JPEG 压缩、模糊、抖动等因素导致的图像退化问题,尤其适合修复老照片、低清影视片段等。
一键提升视频画质Video2X
开源神器 Video2X 让老片秒变 4K 高清,凭借其机器学习算法,为视频超分辨率和帧插值提供了高效解决方案。
Video2X 是一个基于深度学习的视频处理框架,主要提供两大核心功能:
① 视频超分辨率:通过 AI 算法将 480p 等低分辨率视频无损提升至 1080p 或 4K,尤其擅长修复动画、老电影中的模糊画面;
② 帧率提升:利用帧插值技术,可将 30fps 视频平滑升级至 60fps,显著改善运动画面的流畅度。
开源地址:https://github.com/k4yt3x/video2x
💻 技术原理
项目采用业界领先的机器学习模型(如waifu2x、Real-ESRGAN),通过卷积神经网络分析视频帧的纹理特征:
① 空间维度增强:基于单帧图像的超分辨率重建(SISR)技术,智能补全像素细节
② 时间维度优化:运用光流法进行运动补偿,确保多帧画面过渡自然
③ 批量处理能力:支持 GPU 加速,可自动分割视频为帧序列处理后再合成
秒变 4K 画质,让动画“高清重生”Anime4K
Anime4K 只需 3 毫秒就能实时将低清动画升级为 4K 高清,甚至能修复锯齿和噪点,无论是经典老番还是新作,它都能让画面细节起死回生。
开源地址:https://github.com/bloc97/Anime4K
Anime4K 是由开发者 bloc97 创建的开源项目,专注于通过算法实时提升动画视频的分辨率和画质。与依赖深度学习的传统超分技术不同,它采用GLSL着色器(基于OpenGL的编程语言)实现,无需复杂模型训练即可直接处理视频流,兼顾效率与效果。
项目原生支持 Windows、Linux 和 macOS,无需高端GPU,核显设备也能流畅运行。
原文链接: