【GitHub项目推荐--照片视频变清晰】【转载】

本文介绍了腾讯PCGARC实验室研发的GFPGAN,能将模糊照片瞬间变清晰,且有CVPR2021论文支持;同时提及了Real-ESRGAN项目,用于视频超分辨率处理,使用Python实现并广受欢迎。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老照片变清晰GFPGAN

先来看一个效果图,这个开源项目能把模糊爆浆的老照片 1 s 内变成清晰、高清的有色照片。

而以上这些效果,无需专业 PS 技能,只用一个网页端的 Demo、点点鼠标上传图片就能搞定。

这个修复神器,由腾讯 PCG ARC 实验室研发,其相关论文已被 CVPR2021 收录,相关代码和 Demo 也登上了 GitHub 热榜,斩获 1.3K 的 Star!

地址:https://github.com/TencentARC/GFPGAN

让你的动漫视频变清晰Real-ESRGAN

该开源i项目是 视频修复算法 Real-ESRGAN 的实现,可以将模糊的画面变得清晰,并且可以进行 4 倍的超分辨率。

编程语言:Python

开源地址:https://github.com/xinntao/Real-ESRGAN

开源地址:https://github.com/xinntao/Real-ESRGAN-ncnn-vulkan

项目简介 

Real-ESRGAN-ncnn-vulkan 是基于 Real-ESRGAN 模型的优化版本,专为图像/视频超分辨率重建和修复而设计。

与传统的图像增强工具不同,它利用深度卷积神经网络,通过纯合成数据训练模型,大幅提升了对复杂噪声和压缩失真图像的处理能力。

简单来说,它能智能分析图像细节,自动填补缺失信息,实现高质量的“去模糊”效果。  

技术亮点  

① 高效推理与跨平台支持

项目基于 NCNN(腾讯开源的神经网络推理框架)和 Vulkan 图形API开发,支持 Windows、Linux 和 macOS 系统。

Vulkan的 并行计算能力让处理速度更快,即使是低配设备也能流畅运行。  

② 实用性优先的算法设计

相比学术化的超分辨率模型,Real-ESRGAN 更注重实际场景的修复效果。例如,它能处理因 JPEG 压缩、模糊、抖动等因素导致的图像退化问题,尤其适合修复老照片、低清影视片段等。  

 

一键提升视频画质Video2X

开源神器 Video2X 让老片秒变 4K 高清,凭借其机器学习算法,为视频超分辨率和帧插值提供了高效解决方案。

Video2X: A machine learning-based video super resolution and frame interpolation framework.

Video2X 是一个基于深度学习的视频处理框架,主要提供两大核心功能:

① 视频超分辨率:通过 AI 算法将 480p 等低分辨率视频无损提升至 1080p 或 4K,尤其擅长修复动画、老电影中的模糊画面;

6.4.0-screenshot

② 帧率提升:利用帧插值技术,可将 30fps 视频平滑升级至 60fps,显著改善运动画面的流畅度。

开源地址:https://github.com/k4yt3x/video2x

💻 技术原理

项目采用业界领先的机器学习模型(如waifu2x、Real-ESRGAN),通过卷积神经网络分析视频帧的纹理特征:

① 空间维度增强:基于单帧图像的超分辨率重建(SISR)技术,智能补全像素细节

② 时间维度优化:运用光流法进行运动补偿,确保多帧画面过渡自然

③ 批量处理能力:支持 GPU 加速,可自动分割视频为帧序列处理后再合成

秒变 4K 画质,让动画“高清重生”Anime4K

Anime4K 只需 3 毫秒就能实时将低清动画升级为 4K 高清,甚至能修复锯齿和噪点,无论是经典老番还是新作,它都能让画面细节起死回生。 

开源地址:https://github.com/bloc97/Anime4K 

Anime4K 是由开发者 bloc97 创建的开源项目,专注于通过算法实时提升动画视频的分辨率和画质。与依赖深度学习的传统超分技术不同,它采用GLSL着色器(基于OpenGL的编程语言)实现,无需复杂模型训练即可直接处理视频流,兼顾效率与效果。  

项目原生支持 Windows、Linux 和 macOS,无需高端GPU,核显设备也能流畅运行。  

原文链接:

这 3 个项目,找了好久...

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值