【GitHub项目推荐--4个顶级AI Agent开源项目】【转载】

什么是AI Agent?

现在我们与大模型的互动,一般的过程是先输入一个提示词,之后,大模型根据输入内容进行计算并响应。每次想要得到一个新的输出,我们就必须再提供一个提示词。这个过程有点麻烦,因为总是要有人来驱动。

AI Agent(人工智能代理)则以不同的方式工作。他们被设计成可独立思考和行动的智能体。我们唯一需要提供的就是一个目标,可以是研究竞争对手分析、写个网站程序或进行一次旅游。AI Agent会生成一个任务列表,然后开始工作,依靠环境的反馈和自己的内心独白。就好像它们可以提示自己似的,在不断发展中适应变化,以最好的方式实现我们制定的目标。

看起来这个过程和自动化流程有点像,但其实有区别。与自动化流程相比,流程是可预知的,用户可以根据数据或系统状态设置一系列的触发器,并配置接下来要执行的活动,然而不同的是,AI Agent可以在存在大量不可预测新信息的环境中工作。这就是AI Agent。

AI Agent有哪些应用场景?

下面是一些应用例子:

  • 在一个有25个AI Agent的虚拟城镇里会发生什么?斯坦福大学和谷歌对此很好奇,所以他们使用OpenAI的API来创建这些虚拟居民,并观察他们如何生活。为了支持这个实验,研究小组创建了一个存储记忆的平台,以及为每个代理提供目的的基本提示。从那时起,人工智能代理能够相互分享信息,记住他们关系的细节,甚至计划情人节派对。

  • 在自动驾驶汽车领域,因为AI控制汽车从A点到B,同时保持在路上并遵守交通规则。根据自动驾驶系统的发展,车辆可以相互合作,并与城市基础设施合作,集成多个智能体的AI系统。

  • 可以在计算机中使用的AI Agent,用于完成各种任务。研究工作的过程其实就是一个适合使用AI Agent的场景。因为Agent可以像人类一样使用笔记本电脑,在互联网上搜索信息,将其保存在数据库和文件中,经过总结分析,将其转化成摘要,最后与你一起验收结果。

可以想象,未来人类的主要活动就是主导战略并与其他人建立关系,而AI Agent则可以自动化其他的工作,甚至也可以与其它Agent进行交互,完成人类的目标。

值得关注的开源AI Agent项目

令人印象深刻的AI Agent有许多,但下面是目前最值得关注的前四个。

01 AutoGen

源码:

https://github.com/microsoft/autogen

AutoGen是一个由微软与OpenAI以及宾夕法尼亚州立大学和华盛顿大学的研究人员合作建立的人工智能代理框架。支持多代理对话,以解决用户的任务。

可以使用多个代理来开发LLM应用程序,这些代理可以相互配合以解决任务。AutoGen代理是可定制的,可转换的,并且允许人类参与其中。它们可以在各种模式下运行,这些模式采用LLM,人工输入和工具的组合。

02 AutoGPT

源码:

https://github.com/Significant-Gravitas/AutoGPT

AutoGPT是一个使用GPT-4创建的完全自主的AI代理。AutoGPT于2023年3月由首席开发商Toran布鲁斯理查兹首次发布,他也被称为游戏公司Significant Gravitas Ltd.的创始人,该公司生产的电脑游戏带有“道德色彩”,旨在造福和教育全人类。

Auto-GPT是一个实验性的开源应用程序,展示了GPT-4语言模型的功能。这个程序由GPT-4驱动,可以将LLM的“思想”汇聚、连接在一起,以自主实现用户设定的任何目标。

CLI:

$ ./runUsage: cli.py [OPTIONS] COMMAND [ARGS]...
Options:  --help  Show this message and exit.
Commands:  agent      Commands to create, start and stop agents  arena      Commands to enter the arena  benchmark  Commands to start the benchmark and list tests and categories  setup      Installs dependencies needed for your system.

03 BabyAGI

源码:

https://github.com/yoheinakajima/babyagi

BabyAGI于2023年3月由Yohei Nakajima发布。与AutoGPT类似,也是使用GPT-4来开发的完全自主的聊天机器人。

该系统使用OpenAI和矢量数据库(如Chroma或Weaviate)来创建、优先处理和执行任务。这个系统背后的主要思想是,它根据先前任务的结果和预定义的目标创建任务。然后,该脚本使用OpenAI的自然语言处理(NLP)功能来创建基于目标的新任务,并使用Chroma/Weaviate来存储和检索上下文的任务结果。

BabyAGI通过运行一个无限循环来工作,该循环执行以下步骤:

  • 从任务列表中提取第一个任务。

  • 将任务发送给执行代理,执行代理使用OpenAI的API根据上下文完成任务。

  • 丰富结果并将其存储在 Chroma或者Weaviate(向量数据库)。

  • 创建新任务并根据目标和上一任务的结果重新确定任务列表的优先级。

04 ChatDev

源码:

https://github.com/OpenBMB/ChatDev

ChatDev是一个可以模拟整个软件开发团队的开源对话平台。由OpenBMB开发,OpenBMB是一个旨在为AGI构建基础模型和系统的研究实验室。

ChatDev是一个多代理人的组织结构,以“通过编程彻底改变数字世界”为使命,将代理们团结在一起。ChatDev中的代理通过参加专门的功能研讨会进行协作,完成设计、编码、测试和文档编制等任务。

ChatDev的主要目标是提供一个易于使用,高度可定制和可扩展的框架,该框架基于大型语言模型(LLM),是一个研究集体智慧的理想场景。

ChatDev的功能包括:集成了版本控制的Git、用于交互式参与设计阶段的Human-Agent-Interaction模式,以及用于生成软件中使用到的图像的艺术模式。

关于未来

在新技术发展颠覆的过程中,我们总是能听到一句话:“我们往往太高估短期的作用,低估了未来的影响”。可是AGI这场变革来得太快,以至于我们这种影响和作用在时间上都很是紧迫,甚至有时候有些焦虑。但其实未来已来,唯有积极拥抱。

AI Agent对整个社会能够产生的影响多大,可能不好预测。但可以肯定的是:我们的生活和工作将在这个发展过程中改变。

05 Open AI 开源了 Agent 利器:开源 2 天,斩获 5K 星。

Open AI 于 2025 年 3 月 12 日开源 ​openai-agents-python SDK,目前已经获得了 4.9K 的 Star 。

这是专为构建 AI 智能体应用设计的 Python SDK,目标是简化单智能体及多智能体系统的开发流程。

该框架通过三大核心功能降低开发门槛:

1. Responses API:摒弃传统对话式交互,采用任务式设计。例如用户提问相机推荐时,Agent 可自动调用网络搜索工具获取评测数据,结合大模型推理生成结构化报告,无需开发者手动处理多 API 切换。

2. 多智能体协作:通过交接控制(Handoffs)实现智能体间的动态任务分配,例如在跨国电商场景中,语言识别、库存查询、售后服务等 Agent 可自主协作,形成端到端自动化流程。开发者可定义 Agent 网络,每个节点专注于特定任务,并通过上下文传递机制实现信息无缝衔接。

3. 内置工具链、安全机制、流程追踪:

工具集成:支持函数工具(Python 函数封装)、计算机控制(点击/截图等 UI 自动化)和网络搜索(实时数据获取)

​安全护栏(Guardrail)​:通过 Pydantic 强类型验证过滤危险输入,提供输入/输出双层校验,防止越界操作和注入攻击

​流程追踪(Tracing)​:自动记录 Agent 运行日志,支持与 Logfire、AgentOps 等第三方监控平台集成

开源地址:https://github.com/openai/openai-agents-python

06 browser-use:AI 操作浏览器

该项目能够赋予 Ai 大模型类似人类的浏览器操作能力,实现网页任务自动化。

AI Agent 能够直接理解指令,并将其转化为具体的浏览器操作步骤,例如自动填写表单、点击页面按钮、抓取网页信息等,从而实现对浏览器的操控,准确率高达89%。

图片

这个开源项目基于 Python 开发,通过与浏览器自动化工具(如 Playwright)的集成,实现 AI 与浏览器的连接。

目前已经在 GitHub 上获得了 54.2K 的 Star!堪称 Agent 开源项目 No.1

开源地址:https://github.com/browser-use/browser-use

图片

browser-use 该项目兼容 Deepseek 、GPT-4、Claude 等主流的 AI 模型,这意味着你可以使用各种强大的 AI 助手来控制你的浏览器,获得更智能的自动化体验。

不过多介绍这个开源项目了,感兴趣的可以看看我之前发的文章

07 Anything-LLM:智能文档助手

AnythingLLM,打造你的专属智能文档助手。 将任意文档、音频甚至视频转化为 AI 的“知识库”,并与之智能对话。

目前已经在 GitHub 上获得了 42.5K 的 Star!

开源地址:https://github.com/Mintplex-Labs/anything-llm

① 多场景适配:支持 PDF、TXT、DOCX 等文档及音视频内容,一键构建私有知识库。

② AI Agent 加持:内置 Agent 功能,可联网搜索、执行代码,拓展对话能力边界。  

③ 灵活可控:可对接主流大模型及向量数据库,打破技术绑定。  

④ 高效省资源:超大文档仅需一次嵌入处理,成本降低90%,告别重复计算。  

⑤ 智能工作区:文档按“工作区”隔离管理,支持多用户协作与权限分级,保障数据安全。  

08 CrewAI:多 Agent 团队协作

颠覆性 AI 协作框架 CrewAI ,打造 Agent「超级团队」新范式

这是由 CrewAI Inc. 推出的多 Agent 协作框架,该开源项目通过角色化任务编排机制,让 AI Agent 像高效团队一样协同工作,轻松攻克复杂任务闭环,现已在 GitHub 斩获近 30K 星标。

开源地址:https://github.com/crewAIInc/crewAI

① 角色化智能体设计:可定制专属角色/目标/工具,如研究员、内容策略师等岗位分工

② 动态任务委派:支持 Agent 自主协商与任务传递,效率较传统方案提升 40%+

③ 双模式流程引擎:顺序执行/分层管理双驱动,即将推出共识决策等高级模式

④ 全生态模型支持:无缝对接 OpenAI/本地 Ollama/开源大模型,轻松构建混合智能系统

09 Composio:AI 调用工具

让 AI 助手直接操作 GitHub 仓库、管理 Notion 文档,甚至执行 Shell 命令,开源项目 Composio 就是干这个的,现已在 GitHub 斩获近 25K 星标。

开源地址:https://github.com/ComposioHQ/composio

① 全栈工具集成:覆盖 GitHub、Notion、Gmail 等 250+ 生产力工具,更支持本地文件操作和代码分析

② 智能认证管理:OAuth/API 密钥全自动托管,让AI安全接入企业级系统

③ 40%性能飞:专为 LLM 优化的函数调用架构,显著提升工具执行准确率

④ 开发者友好:Python/JavaScript 双支持,5 行代码即可接入 GPT-4/Cllaude 等主流模型

10 Letta:构建长期记忆能力的 Agent

为 AI Agent 打造"长时记忆"的LLM开发框架,该项目原名 MemGPT,现更名为 Letta,专为构建具备长期记忆能力的 AI Agent 而生。目前已经获得了 15.8K 的 Star。

开源地址:https://github.com/letta-ai/letta

① 记忆管理突破:独创分级记忆系统(核心记忆 + 档案记忆)、支持上下文检索、记忆增删改查、数据持久化存储

② 灵活架构:兼容 OpenAI/Anthropic/Ollama 等主流 LLM;

③ 多接口支持:REST API、Python/TS SDK、CLI、ADE 可视化界面; 云原生设计: Docker 一键部署,支持本地/云端部署

11 Activepieces:Zapier 开源替代品

Zapier 的开源替代品,Zapier 是国外比较出名的自动化神器,搭积木一样可以把不同应用串起来(比如把客户信息录入Excel → 给客户发确认短信 →  在企业微信通知客服跟进 → 在飞书记录销售数据)

开源地址:https://github.com/activepieces/activepieces

目前 Activepieces 已经获得了 13.2K 的 Star,但是和 Agent 有什么联系呢?

这个开源项目基于 TypeScript 类型安全框架构建,将 280+ 产品封装为可 AI 大模型调用的 MCP,使开发者贡献的每个组件都能直接转化为 AI Agent,通过Claude Desktop、Cursor等工具与大模型无缝集成。

12 微软开源AI Agent入门教程

微软开源项目 《AI Agents for Beginners》 是为 AI Agent 初学者量身打造的“入门宝典”。

开源地址:https://github.com/microsoft/ai-agents-for-beginners

① 系统化课程设计:10节独立课程,涵盖AI Agent概念、框架、设计模式、多智能体系统等核心知识,每课配有详细教程、视频讲解与代码示例,支持从“零”进阶

② 开发者友好框架:课程深入讲解AI Agent框架如何通过预置组件和工具简化开发流程,助你快速搭建高效智能体系统

③ 实践驱动学习:从理论到实战,课程结合电商客服、旅游规划等场景,教你用代码实现AI Agent的自动化协作

13 Plandex:AI 编程神器

由资深开发者打造的 AI 编程引擎 Plandex,重新定义复杂任务开发模式。这款工具不仅是代码生成器,更是能理解项目结构、制定执行计划的“智能开发伙伴”。

开源地址:https://github.com/plandex-ai/plandex

三大核心突破:

① 多文件任务处理:Plandex 专为复杂现实场景设计,可将大型任务拆解为多步骤子任务,并跨文件逐步实现,解决传统AI工具在长期上下文管理中的痛点

② 终端无缝集成:通过命令行界面(CLI)与现有开发流程融合,开发者无需切换平台即可调用AI能力,大幅提升效率

③ 动态上下文管理:自动追踪项目文件变化,确保AI模型始终基于最新代码库生成解决方案,减少人工干预

④ 调用灵活: 支持 OpenAI/Claude/Gemini 等 20+ 主流模型,云端/本地双模式,企业级数据安全保障,实时Token消耗监控,成本可控

原文链接:

4个顶级AI Agent开源项目,谈一谈大模型、人工智能代理

Open AI 开源了 Agent 利器:开源 2 天,斩获 5K 星。

盘点 8 个「最吊」的 Agent 开源项目! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值