【图论模板】

请添加图片描述

// 树是特殊的图(无环联通图)



// 添加一条边
int h[N], e[N], ne[N], idx;
/*
插入前
a  -->  y
dfs时,含义
    e[idx] = b; // (a节点所有出边对应的节点是e[idx])
    ne[idx] = h[a];    // 出边idx对应的链表尾方向的下一条出边是ne[idx]
    h[a] = idx++;   // a节点的最后一条出边是h[a];

*/


// 在a对应的邻接表里面插入节点b
/*
1. idx是新插入的节点,先给节点赋值;
2. 新来的节点指向的地址;
3. 头插法指向新节点;
*/
void add(int a, int b)
{
		// idx是链表节点的地址
    // 头插法
    e[idx] = b; // idx地址对应的节点存3;
    ne[idx] = h[a]// idx的下一个地址是h[a]
    h[a] = idx++;   // 头节点指向新节点的地址idx
}
// 初始化
idx = 0;
memset(h, -1, sizeof h);
void dfs(int u)
{
	if st[u] return;
	for (int i = h[a]; i != -1; i = ne[i])
	{
		int j = e[i];
		dfs(j)
	}
}
// bfs
// 有向无环图,拓扑图;
// 拓扑序列:把一幅图拉平,边的所有箭头的方向都一致;
// 后序遍历的结果反转就是拓扑排序的结果;
// 时间复杂度 O(n+m), n 表示点数,m 表示边数
bool topsort()
{
	int hh = 0, tt = -1;
	
	// d[i]存储i的入度
	for (int i = 1; i <= n; i++)
		if (!d[i])
			q[++tt] = i;

	while (hh <= tt)
	{
		int t = q[hh++];
		for (int i = h[t]; i != -1; i = ne[i])
		{
			int j = e[i];
			if (--d[j] == 0)
				q[++tt] = j;
		}
	}
	// 如果所有点都入队列了,说明存在拓扑排序
	return tt == n - 1;
}
// 朴素Dijkstra
/**
步骤:
1. 找到当前未被标识,且离源点最近的点t;
2. 对t点进行标识;
3. 用t点更新其他点的距离;
*/

int g[N][N];		// 存储每条边
int dist[N];		// 存储1号点到每个点的最短距离
bool st[N];		// 每个点的最短路径是否被确认

int dijkstra()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	for (int i = 0; i < n - 1; i++)
	{
		int t = -1;
		for (int j = 1; j <= n; j++)
		{
			if (!st[j] && (t == -1 && dist[t] > dist[j]})
			{
				t = j;
			}

		// t来更新所有其他点的距离
		for (int j = 1; j <= n; j++)
		{
			dist[j] = min(dist[j], dist[t] + g[t][j]);
		}
		st[t] = true;
		}
		if (dist[n] == 0x3f3f3f3f) return -1;
		return dist[n];
	}
}
// 堆优化版dijkstra
/*
时间复杂度:O(mlogn),n是点数,m是边数
      b
 1 /	  \  2
a  -- -->  c
	  4
*/
typedef pair<int, int> PII;	// first距离,second节点编号

int n;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];

int dijkstra()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	priority_queue<PII, vector<PII>, greater<PII>> heap;
	heap.push({0, 1});
	
	while (heap.size())
	{
		auto t = heap.top();
		heap.pop();
	
		int ver = t.second, distance = t.first;
		
		if (st[ver]) continue;
		st[ver] = true;
		for (int i = h[ver]; i != -1; i = ne[i])
		{
			int j = e[i];
			if (dist[j] > distance + w[i])
			{
				dist[j] = distance + w[i];
				heap.push({dist[j], j});
			}
		}
	}
}
// Bellman-ford算法
/*
步骤:
1. 循环n,进行n-1次松弛操作;
2. 遍历所有边,所有边进行松弛操作;
3. n-1次松弛操作后还能更新,则存在负环;
三角不等式: dist[b] <= dist[a] + w;
负权回路:在n-1次松弛后还能更新,说明存在负环;
串联效应:第k次迭代,是从第k-1步的状态,转向k步的状态,而串联指的是,在第k次迭代的中途,d[]中部分数据已经发生了迭代(k次状态),迭代后得到k+1次的状态;
// 两重循环, 第二重循环,遍历m条边;
for k 次			// 1号点到n号点,最多经过k条边的最短路径
	for 所有边  a, b, w   a >>  b
			dist[b] = min(dist[b], dist[a] + w);		// 松弛操作;
*/
// spfa算法
/*
队列优化bellmann-Ford算法
*/

const int N = 10000;

int n;
int h[N], w[N], e[N], ne[N], idx;   // 邻接表存储所有边
int dist[N];
bool st[N];		// 邻接表是否在队列中


int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    queue<int> q;
    q.push(1);
    st[1] = true;
    
    while (q.size())
    {
        auto t = q.front();
        q.pop();
        
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
    
}
// spfa算法判断负环
统计每个点的最短路径中所包含的边数,如果某点的最短路径所包含的变数大于等于n,则说明包含负环;
bool spfa()
{
    queue<int> q;

    for (int i = 1; i <= n; i ++ )
    {
        st[i] = true;	// 在队列中,则为true;
        q.push(i);			
    }

    while (q.size())
    {
        int t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;					// 统计最短路径的边数

                if (cnt[j] >= n) return true;
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

作者:yxc
链接:https://www.acwing.com/activity/content/code/content/48499/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

// 朴素版本prim算法
/*
int dist[n];		# 存储各节点到生成树的距离
int state[n];		# 节点是否加入到生成树
int pre[n];			# 节点的前去节点
dist[1] = 0;
for (int i = 0; i < n; i++)
	t <- 没有联通起来,但距离联通部分最近的点;
	state[t]=1;
	更新dist和pre;
	用t更新其他点到集合的距离
*/

Kruskal算法最小生成树

int n, m;
int p[N];

struct Edge
{
	int a, b, w;
	bool operator< (const Edge &W) const
	{
		return w < W.w;
	}
}edges[M];

int find(int x)
{
	if (p[x] != x) p[x] = find(p[x]);
	return p[x];
}

int kruskal()
{
	sort(edges, edges + m);
	for (int i = 1; i <= n; i++)	p[i] = i;		// 初始化并查集
	
	int res = 0, cnt = 0;
	for (int i = 0; i < m; i++)	
	{	
		int a = edges[i].a, b = edges[i].b, w = edges[i].w;	
		a = find(a), b = find(b);
		if (a != b)	// 如果两个连通块不联通,则将其合并
		{
			p[a] = b;
			res += w;
			cnt++;
		}		
	}
	if (cnt < n - 1) return INF;
	return res;
}

染色法判别二分图

定义:二分图的顶点可以划分为两个互不相交的子集,图中每条边依附的两个顶点分属于这两个子集,且子集内顶点互不相邻。
时间复杂度是O(n + m), n表示点数,m表示边数

步骤:
1. 0白色,1黑色,-1初始值;
2. dfs(u, c):将u点染成c颜色,通过宽度优先搜索,看是否有冲突;
3. 遍历所有节点执行dfs;
const int N = 1e5 + 10, M = 2e5 + 10;
int n, m
int h[N], e[M], ne[M], idx;     // e[N], ne[N]  报超时错误
int color[N];

// 参数:u表示当前节点,c表示当前节点颜色
bool dfs(int u, c)
{
	color[u] = c;
	for (int i = h[u]; i != -1; i = ne[i])
	{
		int j = e[i];
		if (color[j] == -1)
		{
			if (!dfs(j, !c))	return false;				
		}
			else if (color[j] == c) return false;
	}
	return true;
}

bool check()
{
	memset(color, -1, sizeof color);
	bool flag = true;
	for (int i = 1; i <= n; i++)
		if (color[i] == -1)
			if (!dfs[i], 0)
			{
				flag = false;
				break;
			}
	return flag;
}

匈牙利算法

二分图的最大匹配

步骤:
1. 第一个集合为男生,第二个集合为女生;
2. find(x)函数作用:如果渣男x来模拟配对,会不会使得匹配增多;
3. find(x)的实现:x相邻的妹子为j,如果j没有男友,或者j的原男友能够找到其他喜欢的妹子,则x和j匹配成功;
int n1, n2;
int h[N], e[M], ne[M], idx;
int match[N];	// 第二个集合中的点对应第一个集合中的哪个
bool st[N];

// 如果x来参与模拟配对,会不会使得匹配增多;
bool find(int x)
{
	for (int i = h[x]; i != -1; i = ne[i])
	{
		int j = e[i];
		if (!st[j])
		{
			st[j] = true;
			if (!match[j] || find(match[j]))		// 如果j没有男友,或者原男友能够预定其他喜欢的女孩,则j配对成功,更新match;
			{
				match[j] = x;
				return true;
			}
		}	
	}
	retrn false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点,能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i++)
{
	memset(st, false, sizeof st);
	if (find(i)) res ++;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值