1 Mean Intercept Length*(Huber and Gibson, 1998)*
为了表示泡沫的几何形状,例如长宽比,方向
这部分其实不是很清楚有什么直接的应用,更多的似乎是描述的几何基础,可能在后续的一些材料简化、等价时候会用到
具体步骤:
-
for foams, we characterize cell shape and orientation by using mean intercept lengths
-
绘制一个测试用的圆consider a circular test area on plane section
-
在圆内画等距的平行线then, you draw equal distance parallel line( e g : θ = 0 eg:\theta=0 eg:θ=0)
-
计数平行线与胞壁的交点数count number of intercepts of cell walls with lines, N C N_C NC
-
按右式计算then you get the intercept length for this orientation,$ L(\theta=0)=\frac{1.5}{N_C}$,1.5是常数
-
按一定增量改变平行线角度,重复increment θ \theta θ by some amount,($eg: 5),repeat
-
在极坐标上绘图then plot polar diagram of intercept lengths as f ( θ f(\theta f(θ)
-
椭圆形拟合fit an ellipse to the points(ellipsoid in 3D)
-
椭圆的主轴即孔隙的主方向then, you get principal axes of ellipsoid are principal dimensions of cells
-
orientation of ellipsoid is orientation of cells
-
can write equation of ellipsoid: A x 1 2 + B x 2 2 + C x 3 2 + 2 D x 1 x 2 + 2 E x 1 x 3 + 2 F x 2 x 3 = 1 Ax_1^2 +Bx_2^2+Cx_3^2+2Dx_1x_2+2Ex_1x_3+2Fx_2x_3=1 Ax12+Bx22+Cx32+2Dx1x2+2Ex1x3+2Fx2x3=1
-
in matrix form:
-
M = [ A D E D B F E F C ] M = \begin{bmatrix} A & D &E \\ D & B &F \\ E & F &C \end{bmatrix} M=⎣⎡ADEDBFEFC⎦⎤
-
can represent it as tensor, “fabric tensor”
-
如果所有非对角元素都为0,那么A,B,C就是主方向if all non-diagonal elements(D,E,F) =0, then A,B,C are principal dimension
2 孔隙的连接性connectivity of cells
关于常用的几个名词的关系:vertices connected by edges which surround faces which enclose cells
edge connectivity Z e Z_e Ze=number of edges that meet at a vertex
typically, hexognal honeycombs =3, foam =4
face connectivity Z f Z_f Zf =number of faces that meet at an edge
typically, 3 for foam
Euler’s law
relate total number of edges E, vertices V, face F, cell C, by Euler’s law for a large aggregate of cells
2D: 0 + F − E + V = 1 0+F-E+V=1 0+F−E+V=1
3D: − C + F − E + V = 1 -C+F-E+V=1 −C+F−E+V=1
for an irregular foam(mean cell with different number of sides) honey coms
E.g. for a honeycomb which is 3-connected, what is average number of sides/faces?
n
ˉ
\bar n
nˉ?
Z
e
=
3
E
V
=
3
2
e
a
c
h
−
e
d
g
e
−
s
h
a
r
e
d
−
b
e
t
w
e
e
−
2
−
v
e
r
t
i
c
e
s
i
f
−
F
n
=
n
u
m
b
e
r
−
o
f
−
f
a
c
e
−
w
i
t
h
−
n
−
s
i
d
e
s
,
t
h
e
n
∑
n
F
n
2
=
E
,
(
s
i
n
c
e
−
e
a
c
h
−
e
d
g
e
−
s
e
p
a
r
a
t
e
s
−
2
−
f
a
c
e
)
u
s
i
n
g
−
E
u
l
e
r
′
s
−
l
a
w
:
F
−
E
+
V
=
1
F
−
E
+
2
3
E
=
1
F
−
1
3
E
=
1
F
−
1
3
∑
n
F
n
2
=
1
6
F
−
∑
n
F
n
=
6
6
−
∑
n
F
n
F
=
6
F
i
f
F
→
l
a
r
g
e
−
n
u
m
b
e
r
,
t
h
e
n
6
F
→
0
6
−
∑
n
F
n
F
=
0
n
ˉ
=
6
Z_e=3\\ \frac{E}{V}=\frac{3}{2} each-edge-shared-betwee-2-vertices\\ if-F_n = number-of-face- with-n-sides, then\\ \frac{\sum{nF_n}}{2}=E,(since-each-edge-separates-2-face)\\ using-Euler's-law:\\ F-E+V=1\\ F-E+\frac{2}{3}E=1\\ F-\frac{1}{3}E=1\\ F-\frac{1}{3}\frac{\sum{nF_n}}{2}=1\\ 6F-\sum{nF_n}=6\\ 6-\frac{\sum{nF_n}}{F}=\frac{6}{F}\\ if F\rarr large-number,then\frac{6}{F}\rarr 0\\ 6-\frac{\sum{nF_n}}{F}=0\\ \bar n = 6
Ze=3VE=23each−edge−shared−betwee−2−verticesif−Fn=number−of−face−with−n−sides,then2∑nFn=E,(since−each−edge−separates−2−face)using−Euler′s−law:F−E+V=1F−E+32E=1F−31E=1F−312∑nFn=16F−∑nFn=66−F∑nFn=F6ifF→large−number,thenF6→06−F∑nFn=0nˉ=6
实际对应上面的计算的实例,如下图所示,该图的数字表示此面所含的边,可以看到有多的,就会有少的,平均下来大概也还是6
Aboav-Weaire Law
generally, face with more sides than average has neighbor with less sides than average
即一个比平均边多的面,一般会有一个邻近的少于平均边的边进行补偿。
if a candidate cell has n sides, then the average number of sides of its n neighbours is:
m ˉ = 5 + 6 / n \bar m=5+6/n mˉ=5+6/n(for 2D)
Lewis’s rule
主要是面积和边数 或 体积和面数 的线性关系
Lewis examined biological cells and 2D cell pattern, found that:
the area of the cell varied linearly with the number of its sides, empirical relationship:
A
(
n
)
A
(
n
ˉ
)
=
n
−
n
0
n
ˉ
−
n
0
\frac{A(n)}{A(\bar n)}=\frac{n-n_0}{\bar n-n_0}
A(nˉ)A(n)=nˉ−n0n−n0
A(n) is area of cell with n sides,
A
(
n
ˉ
)
A(\bar n)
A(nˉ) is area of cell with average side
it holds for Voronoi honeycombs and most other 2D cells
3D case:
V
(
f
)
V
(
f
ˉ
)
=
f
−
f
0
f
ˉ
−
f
0
\frac{V(f)}{V(\bar f)}=\frac{f-f_0}{\bar f-f_0}
V(fˉ)V(f)=fˉ−f0f−f0
V is volume, f is number of face
3 Modelling cellular solids-structural analyses
模拟机械性能主要有3种方法,3 main approach for modelling mechanical properties
- using unit cell, eg. honey comb - hexagonal cell; foam - using tetra-kai-decahedron unit cell
- dimensional analysis:
- geometry is complicated and difficult to model
- dimension instead, model mechanisms of the deformation of failure
- using finite element analysis- numerical technique
- can apply to random structure, eg. Voronoi
- can micro-computed tomography - input to FEA,可以微CT成像,得到实际物体的结构,导入FEA进行分析
- can be used to look at local effects, side effects,
Honeycombs in-plane behaviours
面内变形的应力-应变曲线Stress-strain behavior in plane
压缩Compression
一般包括了3个过程,3 regimes of behaviours
- 线弹性阶段linear elastic - bending
- 应力平台阶段stress plateau - buckling(elastic), yielding(metal), brittle crushing(ceramic)
- 压缩阶段densification - cell walls touching
increase the t/length, increase the E ∗ , σ ∗ , d e c r e a s e , ϵ ∗ E^*, \sigma^*, decrease,\epsilon^* E∗,σ∗,decrease,ϵ∗
拉伸Tension
linear elastic- bending
stress plateau
-
only exists if material yields
-
no buckling in tension
-
脆性材料直接断裂,无平台brittle honey comb fracture(no plateau)
上面的图可以大致分成了三个区域,线弹性区域、平台区域(plateau),压缩区域(densification)
影响机械性能的要素Variables affecting honeycomb mechanical properties
-
相对密度
推导过程,由于六边形的对称性,取半边进行考虑。分子为壁厚区域的体积,因此为边长*厚度。分母为全实心体积,可以采用梯形公式进行计算。分子分母同时除以 l 2 l^2 l2即可得到下式:
ρ ∗ ρ s = t l ( h l + 2 ) 2 c o s θ ( h l + s i n θ ) \frac{\rho^*}{\rho_s}=\frac{\frac{t}{l}(\frac{h}{l}+2)}{2cos\theta(\frac{h}{l}+sin\theta)} ρsρ∗=2cosθ(lh+sinθ)lt(lh+2)
例如, 当 $h/l=1,\theta=30 $时,即正六边形时
ρ ∗ ρ s = 2 ( 3 ) t l \frac{\rho^*}{\rho_s}=\frac{2}{\sqrt(3)}\frac{t}{l} ρsρ∗=(3)2lt -
固态孔隙壁的性质, 模量、屈服强度,断裂强度
-
孔隙的几何尺寸, h / l , θ h/l ,\theta h/l,θ
面内性质In-plane properties
简化假设Assumptions
- t/l is small -> mean we can neglect axial + shear deformations,
- deformation is small -> neglect changes in cell geometry
- cell wall -> linear elastic, isotropic
对称性Symmetry
honeycombs - orthotropic, structure remains the same when rotate 180 degree about 3 mutually vertical axes
hook’s law for Linear elastic deformation
in-plane, there are 4 independent elastic constant,
由于对称性,只需要求出一个泊松比即可,另一个可由对称性导出。
下节课会对面内的杨氏模量进行推导