MIT 3.054胞状材料、多孔材料课程笔记-Lecture3:蜂窝材料的结构

MIT 3.054 Cellular Solids
Lecture 3 Structure of Cellular Solids

1 Mean Intercept Length*(Huber and Gibson, 1998)*

为了表示泡沫的几何形状,例如长宽比,方向

这部分其实不是很清楚有什么直接的应用,更多的似乎是描述的几何基础,可能在后续的一些材料简化、等价时候会用到

具体步骤:

  • for foams, we characterize cell shape and orientation by using mean intercept lengths

  • 绘制一个测试用的圆consider a circular test area on plane section

  • 在圆内画等距平行线then, you draw equal distance parallel line( e g : θ = 0 eg:\theta=0 eg:θ=0)

  • 计数平行线与胞壁的交点数count number of intercepts of cell walls with lines, N C N_C NC

  • 按右式计算then you get the intercept length for this orientation,$ L(\theta=0)=\frac{1.5}{N_C}$,1.5是常数

  • 按一定增量改变平行线角度,重复increment θ \theta θ by some amount,($eg: 5),repeat

  • 在极坐标上绘图then plot polar diagram of intercept lengths as f ( θ f(\theta f(θ)

  • 椭圆形拟合fit an ellipse to the points(ellipsoid in 3D)

  • 椭圆的主轴即孔隙的主方向then, you get principal axes of ellipsoid are principal dimensions of cells

  • orientation of ellipsoid is orientation of cells

  • can write equation of ellipsoid: A x 1 2 + B x 2 2 + C x 3 2 + 2 D x 1 x 2 + 2 E x 1 x 3 + 2 F x 2 x 3 = 1 Ax_1^2 +Bx_2^2+Cx_3^2+2Dx_1x_2+2Ex_1x_3+2Fx_2x_3=1 Ax12+Bx22+Cx32+2Dx1x2+2Ex1x3+2Fx2x3=1

  • in matrix form:

  • M = [ A D E D B F E F C ] M = \begin{bmatrix} A & D &E \\ D & B &F \\ E & F &C \end{bmatrix} M=ADEDBFEFC

  • can represent it as tensor, “fabric tensor”

  • 如果所有非对角元素都为0,那么A,B,C就是主方向if all non-diagonal elements(D,E,F) =0, then A,B,C are principal dimension

2 孔隙的连接性connectivity of cells

关于常用的几个名词的关系:vertices connected by edges which surround faces which enclose cells

edge connectivity Z e Z_e Ze=number of edges that meet at a vertex

typically, hexognal honeycombs =3, foam =4

face connectivity Z f Z_f Zf =number of faces that meet at an edge

typically, 3 for foam

Euler’s law

relate total number of edges E, vertices V, face F, cell C, by Euler’s law for a large aggregate of cells

2D: 0 + F − E + V = 1 0+F-E+V=1 0+FE+V=1

3D: − C + F − E + V = 1 -C+F-E+V=1 C+FE+V=1

for an irregular foam(mean cell with different number of sides) honey coms

E.g. for a honeycomb which is 3-connected, what is average number of sides/faces? n ˉ \bar n nˉ?
Z e = 3 E V = 3 2 e a c h − e d g e − s h a r e d − b e t w e e − 2 − v e r t i c e s i f − F n = n u m b e r − o f − f a c e − w i t h − n − s i d e s , t h e n ∑ n F n 2 = E , ( s i n c e − e a c h − e d g e − s e p a r a t e s − 2 − f a c e ) u s i n g − E u l e r ′ s − l a w : F − E + V = 1 F − E + 2 3 E = 1 F − 1 3 E = 1 F − 1 3 ∑ n F n 2 = 1 6 F − ∑ n F n = 6 6 − ∑ n F n F = 6 F i f F → l a r g e − n u m b e r , t h e n 6 F → 0 6 − ∑ n F n F = 0 n ˉ = 6 Z_e=3\\ \frac{E}{V}=\frac{3}{2} each-edge-shared-betwee-2-vertices\\ if-F_n = number-of-face- with-n-sides, then\\ \frac{\sum{nF_n}}{2}=E,(since-each-edge-separates-2-face)\\ using-Euler's-law:\\ F-E+V=1\\ F-E+\frac{2}{3}E=1\\ F-\frac{1}{3}E=1\\ F-\frac{1}{3}\frac{\sum{nF_n}}{2}=1\\ 6F-\sum{nF_n}=6\\ 6-\frac{\sum{nF_n}}{F}=\frac{6}{F}\\ if F\rarr large-number,then\frac{6}{F}\rarr 0\\ 6-\frac{\sum{nF_n}}{F}=0\\ \bar n = 6 Ze=3VE=23eachedgesharedbetwee2verticesifFn=numberoffacewithnsides,then2nFn=E,(sinceeachedgeseparates2face)usingEulerslaw:FE+V=1FE+32E=1F31E=1F312nFn=16FnFn=66FnFn=F6ifFlargenumber,thenF606FnFn=0nˉ=6
实际对应上面的计算的实例,如下图所示,该图的数字表示此面所含的边,可以看到有多的,就会有少的,平均下来大概也还是6

在这里插入图片描述

Aboav-Weaire Law

generally, face with more sides than average has neighbor with less sides than average

即一个比平均边多的面,一般会有一个邻近的少于平均边的边进行补偿。

if a candidate cell has n sides, then the average number of sides of its n neighbours is:

m ˉ = 5 + 6 / n \bar m=5+6/n mˉ=5+6/n(for 2D)

Lewis’s rule

主要是面积和边数 或 体积和面数 的线性关系

Lewis examined biological cells and 2D cell pattern, found that:

the area of the cell varied linearly with the number of its sides, empirical relationship:
A ( n ) A ( n ˉ ) = n − n 0 n ˉ − n 0 \frac{A(n)}{A(\bar n)}=\frac{n-n_0}{\bar n-n_0} A(nˉ)A(n)=nˉn0nn0
A(n) is area of cell with n sides, A ( n ˉ ) A(\bar n) A(nˉ) is area of cell with average side

it holds for Voronoi honeycombs and most other 2D cells

3D case:
V ( f ) V ( f ˉ ) = f − f 0 f ˉ − f 0 \frac{V(f)}{V(\bar f)}=\frac{f-f_0}{\bar f-f_0} V(fˉ)V(f)=fˉf0ff0
V is volume, f is number of face

3 Modelling cellular solids-structural analyses

模拟机械性能主要有3种方法,3 main approach for modelling mechanical properties

  1. using unit cell, eg. honey comb - hexagonal cell; foam - using tetra-kai-decahedron unit cell
  2. dimensional analysis:
    1. geometry is complicated and difficult to model
    2. dimension instead, model mechanisms of the deformation of failure
  3. using finite element analysis- numerical technique
    1. can apply to random structure, eg. Voronoi
    2. can micro-computed tomography - input to FEA,可以微CT成像,得到实际物体的结构,导入FEA进行分析
    3. can be used to look at local effects, side effects,

Honeycombs in-plane behaviours

面内变形的应力-应变曲线Stress-strain behavior in plane

在这里插入图片描述

在这里插入图片描述

实际变形图

压缩Compression

一般包括了3个过程,3 regimes of behaviours

  1. 线弹性阶段linear elastic - bending
  2. 应力平台阶段stress plateau - buckling(elastic), yielding(metal), brittle crushing(ceramic)
  3. 压缩阶段densification - cell walls touching

increase the t/length, increase the E ∗ , σ ∗ , d e c r e a s e , ϵ ∗ E^*, \sigma^*, decrease,\epsilon^* E,σ,decrease,ϵ

拉伸Tension

linear elastic- bending

stress plateau

  • only exists if material yields

  • no buckling in tension

  • 脆性材料直接断裂,无平台brittle honey comb fracture(no plateau)

在这里插入图片描述

上面的图可以大致分成了三个区域,线弹性区域、平台区域(plateau),压缩区域(densification)

影响机械性能的要素Variables affecting honeycomb mechanical properties

在这里插入图片描述

  1. 相对密度

    推导过程,由于六边形的对称性,取半边进行考虑。分子为壁厚区域的体积,因此为边长*厚度。分母为全实心体积,可以采用梯形公式进行计算。分子分母同时除以 l 2 l^2 l2即可得到下式:
    ρ ∗ ρ s = t l ( h l + 2 ) 2 c o s θ ( h l + s i n θ ) \frac{\rho^*}{\rho_s}=\frac{\frac{t}{l}(\frac{h}{l}+2)}{2cos\theta(\frac{h}{l}+sin\theta)} ρsρ=2cosθ(lh+sinθ)lt(lh+2)
    例如, 当 $h/l=1,\theta=30 $时,即正六边形时
    ρ ∗ ρ s = 2 ( 3 ) t l \frac{\rho^*}{\rho_s}=\frac{2}{\sqrt(3)}\frac{t}{l} ρsρ=( 3)2lt

  2. 固态孔隙壁的性质, 模量、屈服强度,断裂强度

  3. 孔隙的几何尺寸, h / l , θ h/l ,\theta h/l,θ

面内性质In-plane properties

简化假设Assumptions

  1. t/l is small -> mean we can neglect axial + shear deformations,
  2. deformation is small -> neglect changes in cell geometry
  3. cell wall -> linear elastic, isotropic

对称性Symmetry

honeycombs - orthotropic, structure remains the same when rotate 180 degree about 3 mutually vertical axes

hook’s law for Linear elastic deformation

在这里插入图片描述

线弹性材料的胡克定律的矩阵形式(我懒得敲了)

in-plane, there are 4 independent elastic constant,
由于对称性,只需要求出一个泊松比即可,另一个可由对称性导出。
在这里插入图片描述

下节课会对面内的杨氏模量进行推导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值