MIT 3.054胞状材料、多孔材料课程笔记-Lecture4:蜂窝材料面内机械性能

Lecture-4 Honeycombs:In-plane Behavior
MIT course by Lorna Gibson

​ 本节课的内容:计算蜂窝材料的杨氏模量

平面内的压缩,首先发生的的是倾斜面的弯曲,所以需要做的是将结构的变形和微观的变形联系起来。
在这里插入图片描述

x1方向一个单元的长度为 2 l c o s θ 2lcos\theta 2lcosθ

x2方向一个单元的长度是 h + l s i n θ h+lsin\theta h+lsinθ,注意这里没有2是因为为了保证每个单元unit都有相同的长度且不重叠。

参数表示:

在这里插入图片描述

1 x 1 x_1 x1方向的等效杨氏模量推导

将斜面的变形等价成了两个相连的悬臂梁(长度为 l 2 \frac{l}{2} 2l)的变形
E 1 ∗ = E s ( t l ) 3 c o s θ ( h l + s i n θ ) s i n 2 θ E_1^*=E_s(\frac{t}{l})^3\frac{cos\theta}{(\frac{h}{l}+sin\theta)sin^2\theta} E1=Es(lt)3(lh+sinθ)sin2θcosθ
第一项是固体的性质,第二项t/l相当于相对密度,第三项h/l相当于单元的几何形状。

对于正六边形 regular hexagonal cell
h = l , θ = 30 ° ∴ E 1 ∗ = 4 3 E s ( t l ) 3 h=l,\theta=30°\\ \therefore E_1^*= \frac{4}{\sqrt3}E_s(\frac{t}{l})^3 h=l,θ=30°E1=3 4Es(lt)3

2 泊松系数

泊 松 系 数 定 义 : γ 12 ∗ = − ϵ 2 ϵ 1 ϵ 1 = − δ s i n θ l c o s θ ( 变 短 ) ϵ 2 = δ c o s θ h + l s i n θ ( 变 长 ) 注 意 这 里 的 分 母 长 度 是 没 有 取 2 , 是 因 为 上 述 取 单 元 长 度 时 , 每 个 单 元 长 度 在 x 2 方 向 上 只 包 含 一 组 变 形 的 倾 斜 梁 。 ∴ γ 12 ∗ = − ϵ 2 ϵ 1 = − δ c o s θ h + l s i n θ ( − l s i n θ δ c o s θ ) = − c o s 2 θ ( h l + s i n θ ) s i n θ 泊松系数定义:\gamma_{12}^*=-\frac{\epsilon_2}{\epsilon_1}\\ \epsilon_1 = -\frac{\delta sin\theta}{l cos\theta} (变短)\\ \epsilon_2 = \frac{\delta cos\theta}{h+lsin\theta} (变长) \\ 注意这里的分母长度是没有取2,是因为上述取单元长度时,每个单元长度在x_2方向上只包含一组变形的倾斜梁。\\ \therefore \gamma_{12}^*=-\frac{\epsilon_2}{\epsilon_1} =- \frac{\delta cos\theta}{h+lsin\theta}(-\frac{l sin\theta}{\delta cos\theta})\\ =- \frac{cos^2\theta}{(\frac{h}{l}+sin\theta)sin\theta} γ12=ϵ1ϵ2ϵ1=lcosθδsinθϵ2=h+lsinθδcosθ)2x2γ12=ϵ1ϵ2=h+lsinθδcosθ(δcosθlsinθ)=(lh+sinθ)sinθcos2θ

泊松系数只取决于单元的几何尺寸,和所选择的材料无关

对于正六边形, γ 12 ∗ = 1 \gamma_{12}^*=1 γ12=1

负泊松比材料的来源,若 θ < 0 \theta<0 θ<0,则泊松比则为负.

例如:

对 于 h / l = 2 , θ = 30 ° , γ 12 ∗ = − 1 对于h/l=2,\theta =30°, \gamma_{12}^*=-1 h/l=2θ=30°,γ12=1

上述的以及其他的量(例如剪切模量),全部推导都在《Cellular material》上有

3 Compressive strength(Plateau Stress)

cell collapse by:

3.1 Elastic buckling弹性屈曲

buckling of vertical members(wall of length h) throughout the honeycomb

只在 x 2 x_2 x2方向上加载时候会发生。

x 1 x_1 x1方向上加载,只会发生densification压缩。

在这里插入图片描述

plateau stress: ( σ e l ∗ ) 2 (\sigma_{el}^*)_2 (σel)2

欧拉屈曲载荷Euler buckling load:
P c r = n 2 π 2 E s I h 2 n 是 约 束 因 子 e n d c o n s t r a i n t f a c t o r , 对 于 p i n − p i n 约 束 是 n = 1 , 对 于 f i x e d − f i x e d 约 束 , n = 2 P_{cr} = \frac{n^2\pi^2 E_sI}{h^2}\\ n是约束因子end constraint factor,\\ 对于pin-pin约束是n=1,对于fixed-fixed约束,n=2 Pcr=h2n2π2EsInendconstraintfactorpinpinn=1fixedfixedn=2
由于n我们无法确定,因此发生屈曲的难度取决于斜边的弯曲强度,因为两个交点相当于约束,斜边的弯曲强度决定了约束的程度,即n的取值。

可以采用elastic line analysis,匹配两边的弯曲刚度。

一些n的典型值
h l \frac{h}{l} lhn
10.686
1.50.760
2.00.806

得到屈曲载荷后,除以单位长度,可得到屈曲的应力大小。可以看到受到材料性质、相对密度、形状尺寸影响。

( σ e l ∗ ) 2 = P c v 2 l c o s θ b = n 2 π 2 24 E s ( t l ) 3 ( h l ) 2 c o s θ (\sigma_{el}^*)_2=\frac{P_{cv}}{2lcos\theta b}=\frac{n^2\pi^2}{24}E_s\frac{(\frac{t}{l})^3}{(\frac{h}{l})^2cos\theta} (σel)2=2lcosθbPcv=24n2π2Es(lh)2cosθ(lt)3
对于正六边形
( σ e l ∗ ) 2 = 0.22 E s ( ( t l ) 3 s i n c e E 2 ∗ = 4 3 E s ( t l ) 3 = 2.31 E s ( t l ) 3 s t r a i n ( ϵ e l ∗ ) 2 = ( σ e l ∗ ) 2 E 2 ∗ = 0.10 所 以 屈 曲 的 应 变 为 定 值 (\sigma_{el}^*)_2=0.22E_s((\frac{t}{l})^3\\ since\\ E_2^*=\frac{4}{\sqrt3}E_s(\frac{t}{l})^3=2.31E_s(\frac{t}{l})^3\\ strain (\epsilon_{el}^*)_2=\frac{(\sigma_{el}^*)_2}{E_2^*}=0.10\\ 所以屈曲的应变为定值 (σel)2=0.22Es((lt)3sinceE2=3 4Es(lt)3=2.31Es(lt)3strain(ϵel)2=E2(σel)2=0.10

3.2 Plastic yielding ( σ p l ∗ ) 1 (\sigma_{pl}^*)_1 (σpl)1

对应材料:金属蜂窝材料

首先会局部屈服,然后随着压缩,屈服的区域会拓宽localization of yield, as deformation progresses

假设 σ y s \sigma_{ys} σys为固定金属材料的屈服强度。

在这里插入图片描述
在这里插入图片描述

所上图所示,完全后会在末端形成Plastic hinge, 首先屈服的区域。

屈服过程首先发生在末端的横截面的最外端(应力最大),之后随着应力的增加拓展区域。

(下图左边为屈服中的过程,右图为完全屈服后,在整个横截面上都达到了材料的屈服强度,形成了plastic hinge)

在这里插入图片描述

屈服区域内部上下两个应力,会形成内部的力矩internal moment of formation of plastic hinge
M p = ( σ y s b t 2 ) t 2 = σ y s b t 2 4 M_p = (\sigma_{ys}b\frac{t}{2})\frac{t}{2}=\sigma_{ys}\frac{bt^2}{4} Mp=(σysb2t)2t=σys4bt2
接下来,将内部力矩和外部施加载荷时候的力矩联系其起来

在这里插入图片描述

斜边受到两个力矩,两个力的作用,由静力平衡求得,再与内部力矩相等:
2 M a p p − P l s i n θ = 0 ∴ M a p p = P l s i n θ 2 = M p a n d , σ 1 = P ( h + l s i n θ ) b , 可 以 算 得 P 代 入 上 式 消 去 P ∴ ( σ p l ∗ ) 1 = σ y s ( t l ) 2 1 2 ( h / l + s i n θ ) s i n θ s i m i l a r l y , ( σ p l ∗ ) 2 = σ y s ( t l ) 2 1 2 c o s 2 θ 2M_{app}-Plsin\theta=0\\ \therefore M_{app}=\frac{Plsin\theta}{2}=M_p\\ and,\sigma_1=\frac{P}{(h+lsin\theta)b},可以算得P代入上式消去P\\ \therefore (\sigma_{pl}^*)_1=\sigma_{ys}(\frac{t}{l})^2\frac{1}{2(h/l+sin\theta)sin\theta}\\ similarly,(\sigma_{pl}^*)_2=\sigma_{ys}(\frac{t}{l})^2\frac{1}{2cos^2\theta} 2MappPlsinθ=0Mapp=2Plsinθ=Mpand,σ1=(h+lsinθ)bPPP(σpl)1=σys(lt)22(h/l+sinθ)sinθ1similarly,(σpl)2=σys(lt)22cos2θ1
对于正六边形
( σ p l ∗ ) 1 = 2 3 σ y s ( t l ) 2 (\sigma_{pl}^*)_1=\frac{2}{3}\sigma_{ys}(\frac{t}{l})^2\\ (σpl)1=32σys(lt)2

对于薄壁蜂窝材料(例如薄壁铝蜂窝),弹性屈曲会先于塑性变形

弹性屈曲应力=塑性屈服强度,求解该方程可以得到边界条件(决定谁先发生),可以得到临界的相对密度:
( t l ) c r i t i c a l = 12 n 2 π 2 ( h l ) 2 c o s θ σ y s E s (\frac{t}{l})_{critical}=\frac{12}{n^2\pi^2}\frac{(\frac{h}{l})^2}{cos\theta}\frac{\sigma_{ys}}{E_s} (lt)critical=n2π212cosθ(lh)2Esσys
对于正六边形,且金属材料,金属决定了第三项屈服强度/杨氏模量约等于0.002,可以得到相对密度约为0.6%,大部分金属蜂窝的相对密度都大于它。所以一般都是先屈服(yield)了再屈曲(buckling)

但对于聚合物,第三项则约为0.030.05,所以**相对密度约为1015%,所以低密度的聚合物蜂窝材料**先屈曲(buckling)再屈服(yield)

3.3 Brittle crushing ( σ c r ∗ ) (\sigma_{cr}^*) (σcr)

对应材料:陶瓷蜂窝材料

峰+谷表示某些单元面的断裂

Peaks + valleys correspond to fracture of individual cell wall

在这里插入图片描述

crushing stress

没讲完,下节课接着推导 Next Lecture

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值