机器学习
1基本概念
2监督学习(分类)
3监督学习(回归)
4非监督学习
1.学习
针对经验E和一系列的任务T和一定的表现的衡量P,
如果随着E的积累,针对定义好的任务T可以提高表现P,就说计算机具有学习能力
2.deep learning
基于机器学习,以神经网络算法为起源价值模型结构深度增加的发展。
3.机器学习
待学习的概念或目标函数成为目标概念(target concept),记做c。
c(x)=1,当享受运动时,c(x)=0当不享受运动时,c(x)也可叫做y
x:每一个实例
X:样例,所有实例的集合
学习目标:f:X->Y
4.其他概念
训练集(training set):用来进行训练,也就是产生模型或者算法的数据集
测试集(testing set):用来专门进行测试已经学习好的模型或者算法的数据集
特征向量(feature values):属性的集合,通常用一个向量来表示
标记:实例类别的标记,即最后结果的取值,如是,否
正例
反例
5.根据结果的取值不同,可以分为:
分类(如布尔类型):目标标记为类别型数据
回归(如数值):目标标记为连续性数值
6.例子:研究肿瘤良性,恶性与尺寸,颜色的关系
特征值:肿瘤尺寸,颜色
标记:良性/恶性
有监督学习:训练集有类别标记
无监督学习:训练集无类别标记
半监督学习:部分有,部分无
7.机器学习步骤框架
7.1.把数据分为测试集和训练集
7.2.用训练集和训练集的特征向量来训练算法
7.3.用学习来的算法运用在测试集上来评估算法(可能要调整参数),用验证集