✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
薄膜波导作为集成光学的核心器件,在光通信、光传感、光计算等领域扮演着至关重要的角色。其结构简单、体积小巧、易于集成等优点使其成为构建复杂光子器件的首选。然而,随着应用需求的日益增长,对波导性能的要求也越来越高,例如更高的传输效率、更低的损耗、更好的模式控制等。为了优化波导设计,深入理解其传输特性至关重要。
在分析薄膜波导传输特性方面,数值模拟方法扮演着不可或缺的角色。其中,时域有限差分法(Finite-Difference Time-Domain, FDTD)凭借其精度高、适用性广等优点,成为研究复杂波导结构的首选方法。本文将重点探讨基于FDTD方法模拟非对称薄膜波导的传输特性分析。
一、非对称薄膜波导的结构与特点
典型的薄膜波导由高折射率的薄膜层(芯层)夹在折射率较低的上下包层之间构成。与对称波导不同,非对称薄膜波导的上下包层具有不同的折射率。这种非对称性带来的影响主要体现在以下几个方面:
-
模式截止条件的变化: 非对称结构会影响波导支持的模式数量及其截止条件。相比于对称波导,非对称波导可能更容易支持基模,但对高阶模式的限制也可能更加严格。
-
模式场分布的偏移: 在非对称波导中,模式场分布会向高折射率包层一侧偏移,导致模式场的空间分布不均匀。
-
偏振相关性增强: 非对称结构可能会加剧TE和TM模式之间的传播常数差异,导致波导对不同偏振态的光具有不同的响应。
-
更高的灵敏度: 在光传感应用中,非对称结构可以通过优化包层折射率的选择来提高对环境折射率变化的敏感度。
二、FDTD方法及其在波导模拟中的应用
FDTD方法是一种基于麦克斯韦方程组的时域有限差分数值计算方法。它通过将空间和时间离散化,将电场和磁场分量交替地进行差分迭代更新,从而求解电磁场在复杂结构中的传播特性。其核心思想如下:
-
麦克斯韦方程组的离散化: 首先,将麦克斯韦方程组中的微分算子用有限差分近似代替,例如中心差分法,得到离散化的电场和磁场更新公式。
-
Yee氏网格: 采用Yee氏网格将电场和磁场分量交错排列,保证了差分格式的中心对称性,提高了计算精度。
-
时间迭代: 基于离散化的更新公式,电场和磁场分量在时间上交替迭代更新,直到达到预设的模拟时间。
-
边界条件: 为了模拟无限大的空间,需要在计算区域的边界设置合适的吸收边界条件,例如完全匹配层(Perfectly Matched Layer, PML),以吸收向外传播的电磁波,避免反射造成的干扰。
在模拟非对称薄膜波导的传输特性时,FDTD方法可以用来:
-
求解模式分布: 通过计算波导中的电场和磁场分布,可以确定波导支持的模式类型及其空间分布。
-
计算传播常数: 通过分析电场和磁场随传播距离的变化,可以提取传播常数,进而计算有效折射率。
-
分析损耗特性: 通过计算功率的衰减,可以评估波导的传输损耗,包括材料吸收损耗、散射损耗等。
-
研究弯曲波导和波导耦合器的传输特性: FDTD方法可以模拟复杂波导结构的传输特性,例如弯曲波导中的辐射损耗、波导耦合器中的耦合效率等。
三、基于FDTD模拟非对称薄膜波导传输特性的具体步骤
基于FDTD方法模拟非对称薄膜波导的传输特性通常包括以下几个步骤:
-
构建模型: 首先,需要在FDTD仿真软件中建立非对称薄膜波导的几何模型,包括芯层、上下包层的尺寸和折射率。需要精确定义各个材料的折射率,并确保模型的精度。
-
设置仿真参数: 设定仿真区域的大小、网格尺寸、时间步长、光源类型和位置、吸收边界条件等参数。网格尺寸的选择需要根据实际情况进行优化,以确保计算精度和效率。通常,网格尺寸应小于波长的十分之一。
-
选择光源: 选择合适的激励光源,例如高斯光束、模式场分布等,并将其放置在波导的入口处。光源的偏振方向也需要根据研究的需求进行设置。
-
运行仿真: 运行FDTD仿真,计算电磁场在波导中的传播过程。需要监控仿真过程,确保其稳定运行,直到达到预设的模拟时间。
-
数据分析: 对仿真结果进行数据分析,提取所需的传输特性参数,例如模式分布、传播常数、损耗等。可以通过对电场和磁场进行傅里叶变换来提取模式信息。
⛳️ 运行结果
🔗 参考文献
[1] 郝鹏.若干微纳光学器件光学性能分析及实验研究[D].中国科学技术大学,2012.DOI:10.7666/d.y2126312.
[2] 汪园园.硅基薄膜太阳能电池界面微纳结构设计及光电性能分析[D].合肥工业大学,2019.
📣 部分代码
JE=400;
IE=100;
IB=IE+1;
JB=JE+1;
n1=1.6;
n2=1.5;
n3=1.3;
npml=8;
lamda=0.3e-6;%%%%%%%%%%%%%%%%%
c0=3*10^8;
h=1.0e-6;
a=h/2;
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇