二维多孔介质图像的粒度分布研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

多孔介质是自然界和工程领域中普遍存在的一类物质,其微观结构由固相骨架和孔隙网络构成。孔隙的存在赋予了多孔介质独特的物理化学性质,如渗透性、扩散性、吸附性以及反应活性等。对多孔介质微观结构的研究,尤其是其孔隙空间的特征,对于理解和预测其宏观行为至关重要。在众多微观结构参数中,孔隙的粒度分布(Pore Size Distribution, PSD)是描述孔隙空间大小和形状的关键指标之一,它直接影响着流体在多孔介质中的流动、传质和反应过程。

传统的粒度分布测量方法,如压汞法、气体吸附法等,通常对样品具有破坏性,且难以捕捉真实的孔隙形貌和空间连通性。随着计算机技术和图像处理技术的飞速发展,基于二维多孔介质图像的粒度分布研究应运而生,并逐渐成为一种非破坏性、直观且信息丰富的研究手段。这种方法通过对多孔介质的二维切片或表面图像进行分析,提取出孔隙空间的几何信息,进而推断其粒度分布。本论文旨在深入探讨基于二维多孔介质图像的粒度分布研究方法、挑战以及未来发展方向。

一、基于二维图像的粒度分布研究方法

基于二维图像的粒度分布研究主要依赖于对孔隙图像的分割、识别和特征提取。其基本流程通常包括:

  1. 图像获取与预处理:获取高质量的多孔介质二维图像是后续分析的基础。常用的图像获取技术包括光学显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及X射线显微CT等。获取的原始图像可能存在噪声、对比度不足、照明不均等问题,需要进行预处理,如滤波、灰度校正、增强等,以提高图像质量,便于后续的分割。

  2. 图像分割:图像分割是将图像中的孔隙区域与固相骨架区域区分开来的关键步骤。常用的分割方法包括阈值法、边缘检测法、区域生长法以及基于机器学习的方法(如U-Net等)。阈值法是最常用的方法之一,通过设定一个灰度阈值将图像像素分为孔隙和固相两类。选择合适的阈值至关重要,常用的阈值选择方法包括大津法(Otsu's method)和迭代阈值法等。然而,对于灰度分布不均匀或存在模糊边界的图像,阈值法可能效果不佳,此时可以考虑使用更复杂的分割技术。

  3. 孔隙识别与标记:在图像分割后,需要对分割出的孔隙区域进行识别和标记。常用的方法是连通域分析,通过识别图像中相互连接的像素集合来确定独立的孔隙区域。对于每一个识别出的孔隙区域,可以赋予一个唯一的标签或编号,以便后续进行特征提取。

  4. 孔隙特征提取与粒度定义:识别出独立的孔隙区域后,需要提取能够反映孔隙大小的几何特征。二维图像中,常用的孔隙大小定义包括:

    • 面积当量直径:

      将孔隙区域的面积等效为一个圆,计算该圆的直径。

    • 最大内切圆直径:

      计算孔隙区域内能够包含的最大圆的直径。这个方法对于描述孔隙的“通过”能力具有一定的意义。

    • 主轴长度:

      对于非圆形孔隙,可以计算其主轴和短轴长度。

    • 骨架化/中轴变换:

      对孔隙区域进行骨架化或中轴变换,获得孔隙的中心线,通过分析中心线上的点到边界的最短距离来表征孔隙大小。

    • 基于形态学操作:

      利用开闭运算等形态学操作,通过不同尺寸的结构元素对孔隙进行探测和度量。

选择哪种特征来定义孔隙大小取决于研究目的和孔隙的形态。对于形状不规则的孔隙,采用单一的尺寸参数可能无法全面描述其大小,可以考虑结合多种特征。

  1. 粒度分布计算:

    在提取出每个孔隙的尺寸特征后,就可以计算孔隙的粒度分布。通常以孔隙尺寸为横坐标,以该尺寸范围内孔隙的数量或面积占总孔隙数量或总孔隙面积的比例为纵坐标,绘制粒度分布直方图或累积分布曲线。常用的粒度分布表示形式包括数量分布、面积分布和体积分布(尽管基于二维图像推断体积分布存在一定的挑战)。

二、基于二维图像的粒度分布研究的挑战

尽管基于二维图像的粒度分布研究具有诸多优势,但也面临一些固有的挑战:

  1. 二维信息的局限性:二维切片或表面图像只能提供多孔介质三维结构的投影或截面信息。真实的孔隙通常是相互连接、形态各异的三维空间结构。基于二维图像提取的孔隙特征,如面积当量直径,可能无法准确反映真实三维孔隙的大小和连通性。不同的二维切面可能会得到不同的孔隙结构图像和粒度分布结果,这使得如何从二维信息准确推断三维孔隙结构成为一个重要问题。

  2. 切面效应:对于不规则形状的孔隙,一个二维切面可能只会穿过其一部分,导致观察到的孔隙尺寸小于其实际尺寸。这种切面效应会影响粒度分布的准确性,尤其对于形状差异较大的孔隙更是如此。

  3. 孔隙连通性:基于二维图像,很难直接获取孔隙之间的连通信息。而孔隙连通性对于流体在多孔介质中的传输至关重要。虽然可以通过分析孔隙的形态和空间分布来间接推断连通性,但这与真实的三维连通结构存在差异。

  4. 图像质量与分辨率:图像的质量和分辨率直接影响到孔隙分割和特征提取的准确性。低质量的图像可能导致孔隙边界模糊,分割困难;分辨率不足的图像可能无法清晰地分辨微小孔隙,导致小孔隙被忽略。

  5. 孔隙定义的多样性与不确定性:对于不规则形状的孔隙,选择何种特征来定义孔隙大小存在多种选择,不同的定义方式可能导致不同的粒度分布结果,增加了结果的不确定性。

三、弥补二维局限性的努力与进展

为了克服二维图像分析的局限性,研究人员进行了多方面的努力:

  1. 立体学方法:利用立体学原理,通过分析多个二维切片来重建或推断三维结构。例如,可以对多个平行切片进行分析,结合统计学方法来估计三维孔隙结构参数。

  2. 基于三维重建的方法:结合序列切片成像技术(如聚焦离子束扫描电子显微镜FIB-SEM)或X射线显微CT等三维成像技术,获取多孔介质的三维图像。在此基础上进行三维分割和孔隙特征提取,可以更准确地描述真实的孔隙大小和连通性。虽然三维成像技术成本较高且数据量庞大,但其提供的丰富信息是二维成像无法比拟的。

  3. 数值模拟与模型验证:将从二维图像中提取的孔隙特征作为输入参数,结合数值模拟方法(如格子玻尔兹曼法、孔隙网络模型等)来模拟流体在多孔介质中的传输过程。通过将模拟结果与实验结果进行对比,可以验证基于二维图像提取的孔隙参数是否能够准确反映多孔介质的宏观行为。

  4. 机器学习与深度学习的应用:机器学习和深度学习在图像分割、特征提取和三维重建方面展现出巨大的潜力。例如,可以利用深度学习模型进行高精度的孔隙分割,或者训练模型从二维图像中预测三维孔隙结构信息。

  5. 多尺度分析:多孔介质的孔隙结构通常具有多尺度特征。结合不同分辨率的图像,对不同尺度的孔隙进行分析,可以更全面地描述多孔介质的孔隙空间。

四、基于二维图像粒度分布的应用

尽管存在局限性,基于二维图像的粒度分布研究在许多领域仍然具有重要的应用价值:

  1. 材料科学与工程:研究多孔材料的孔隙结构与其宏观性能之间的关系,例如催化剂、吸附剂、滤膜、燃料电池电极等。了解孔隙粒度分布有助于优化材料制备工艺,调控材料性能。

  2. 地质科学与石油工程:分析岩石和土壤的孔隙结构,研究油气储层、地下水流动以及污染物迁移等。孔隙粒度分布是评估储层渗透性和预测流体流动行为的重要参数。

  3. 生物医学:研究生物组织、骨骼、多孔生物材料等的孔隙结构,了解其对细胞生长、物质输运以及生物力学性能的影响。

  4. 环境科学:研究土壤、沉积物等环境介质的孔隙结构,了解其对水分、污染物迁移和微生物活动的影响。

  5. 食品科学:研究多孔食品材料(如面包、蛋糕等)的孔隙结构,了解其对口感、质地和保质期的影响。

结论

基于二维多孔介质图像的粒度分布研究作为一种重要的微观结构分析手段,为理解多孔介质的性质提供了直观且丰富的信息。尽管二维信息存在固有的局限性,无法完全准确地描述真实的三维孔隙结构,但通过合理的图像处理技术和孔隙尺寸定义,仍然能够获得具有重要参考价值的粒度分布信息。同时,通过结合立体学、三维重建、数值模拟以及机器学习等方法,可以有效地弥补二维分析的不足,提高粒度分布结果的准确性和可靠性。

未来,基于二维图像的粒度分布研究将继续朝着更高的分辨率、更精确的孔隙分割、更智能的特征提取以及更深入的二维-三维信息转化方向发展。随着人工智能技术的不断成熟,有望开发出更先进的算法,能够从二维图像中更准确地推断三维孔隙结构,并预测多孔介质的宏观性能。此外,将基于图像的分析与传统的孔隙结构测量方法相结合,可以相互印证,提高研究结果的可信度。总之,基于二维多孔介质图像的粒度分布研究将持续为多孔介质领域的科学研究和工程应用提供重要的技术支撑。

⛳️ 运行结果

🔗 参考文献

[1] 马斌,雷树业,王良璧.等径颗粒圆柱填充床近壁区孔隙率分布规律新探[C]//中国工程热物理学会年会.中国工程热物理学, 2005.

[2] 侯戎彬.多孔介质对流换热系数的分形研究[D].内蒙古科技大学,2015.

[3] 崔婕,郝笑笑,徐佳琦,等.土壤分形特征分析及其溶质迁移过程数值模拟[C]//2014年全国环境力学学术研讨会.2014.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值