【电力系统】利用通信基础设施提高电网的稳态稳定性附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

电力系统作为支撑现代社会运转的基石,其安全可靠运行至关重要。稳态稳定性,作为电力系统安全运行的重要指标,衡量了系统在受到小扰动后恢复到原有或可接受运行状态的能力。随着电力系统规模的日益扩大、新能源发电的渗透率不断提高以及电力市场交易的复杂化,传统的稳态稳定控制策略面临着严峻挑战。然而,现代通信基础设施的快速发展为提高电网的稳态稳定性提供了前所未有的机遇。本文将探讨如何充分利用通信基础设施,优化电网的稳态稳定控制策略,从而提升电力系统的安全可靠性。

一、传统稳态稳定控制的局限性

传统的稳态稳定控制方法主要依赖于本地测量信息和预先设定的控制规则。例如,自动电压调节器(AVR)根据母线电压偏差调整发电机励磁,调速器根据频率偏差调整机组出力。这些本地控制策略具有响应速度快、实现成本低的优点,但在面对大规模扰动或复杂运行条件时,其局限性也日益显现:

  • 信息孤岛效应: 本地控制策略仅依赖于本地测量信息,缺乏对全网状态的全局认识。当系统发生连锁故障时,各个控制单元可能做出相互冲突的决策,反而加剧系统的不稳定性。

  • 响应速度慢: 传统控制策略的响应速度受限于传感器的采样频率和控制器的计算能力,难以适应快速变化的电力系统运行状态。特别是面对间歇性新能源发电带来的波动,传统控制策略难以实现快速有效的调节。

  • 适应性差: 预先设定的控制规则难以适应电力系统运行状态的动态变化。随着新能源发电接入比例的提高和负荷特性的改变,原有的控制参数可能不再适用,甚至可能引发系统的不稳定。

  • 缺乏优化: 传统控制策略通常基于经验和规则进行设计,缺乏对控制参数和控制策略的优化,难以实现全局最优的控制效果。

二、通信基础设施在提高稳态稳定性中的作用

现代通信基础设施,特别是基于光纤通信的高速、可靠、安全的通信网络,为电力系统提供了实时、全面的信息交互平台。利用通信基础设施,可以构建广域测量系统(WAMS),实现对电力系统运行状态的全局感知和协调控制,从而有效克服传统稳态稳定控制的局限性。

  1. 广域测量系统(WAMS): WAMS 是一种利用同步相量测量单元(PMU)收集全网各节点电压、电流相量等信息,并通过高速通信网络将数据传输到控制中心的系统。PMU 具有高精度、高分辨率、时间同步等优点,可以提供实时、全面的电力系统运行状态信息。

    • 状态估计与监测: 利用 WAMS 数据,可以进行实时状态估计,准确掌握全网的电压分布、潮流分布和稳定裕度。通过监测关键母线电压、线路潮流和发电机功角,可以及时发现潜在的不稳定因素,并采取相应的控制措施。

    • 故障诊断与定位: WAMS 数据可以用于故障诊断和定位。通过分析 PMU 数据,可以快速识别故障类型、位置和严重程度,为快速恢复系统提供信息支持。

    • 动态稳定分析: WAMS 数据可以用于动态稳定分析,评估电力系统在受到扰动后的稳定性。通过分析 PMU 数据的变化趋势,可以预测系统是否会发生失稳,并采取相应的控制措施。

  2. 广域控制系统(WACS): WACS 是一种基于 WAMS 数据,通过高速通信网络实现对全网设备的协调控制的系统。WACS 可以实现对发电机励磁、静止无功补偿器(SVC)、柔性交流输电系统(FACTS)等设备的协调控制,提高电力系统的稳态稳定性。

    • 电压稳定控制: WACS 可以根据全网电压分布情况,协调控制 SVC、FACTS 等设备,提高电压稳定裕度,防止电压崩溃。通过优化无功功率的分配,可以有效支撑关键母线的电压,提高电压稳定性。

    • 潮流控制: WACS 可以根据全网潮流分布情况,协调控制 FACTS 等设备,优化潮流分布,缓解线路过载,提高输电能力。通过调整线路的阻抗和相角,可以控制潮流的流向和大小,提高潮流稳定性。

    • 振荡抑制: WACS 可以抑制电力系统中的低频振荡。通过分析 WAMS 数据,可以识别振荡模式,并设计相应的阻尼控制器,利用发电机励磁、SVC、FACTS 等设备提供阻尼,抑制振荡。

三、利用通信基础设施提高稳态稳定性的关键技术

为了充分发挥通信基础设施在提高电网稳态稳定性中的作用,需要关注以下关键技术:

  1. 高速可靠的通信网络: 高速、可靠的通信网络是实现 WAMS 和 WACS 的基础。需要采用光纤通信、无线通信等技术,构建具有高带宽、低延迟、高可靠性的通信网络。同时,需要采取冗余备份、加密等措施,确保通信网络的安全性。

  2. 同步相量测量技术: PMU 是 WAMS 的核心设备。需要不断提高 PMU 的精度、分辨率和可靠性,并开发新型 PMU 设备,满足不同应用场景的需求。同时,需要研究 PMU 数据的压缩、加密和传输技术,提高数据传输效率和安全性。

  3. 状态估计与动态稳定分析技术: 需要开发高精度、高效率的状态估计方法,利用 WAMS 数据准确估计电力系统的运行状态。同时,需要研究基于 WAMS 数据的动态稳定分析方法,评估电力系统的稳定裕度,预测系统是否会发生失稳。

  4. 广域控制算法: 需要开发高效、可靠的广域控制算法,实现对全网设备的协调控制。控制算法需要考虑电力系统的非线性、时变性和不确定性,并具有较强的鲁棒性和自适应性。同时,需要研究分散式控制、分层控制等策略,提高控制系统的可靠性和可扩展性。

  5. 信息安全防护技术: 电力系统通信网络的安全防护至关重要。需要采取防火墙、入侵检测、身份认证等措施,防止网络攻击和数据泄露。同时,需要建立完善的网络安全管理体系,定期进行安全评估和漏洞修复。

四、面临的挑战与展望

尽管利用通信基础设施提高电网稳态稳定性具有巨大的潜力,但也面临着一些挑战:

  • 数据量大: WAMS 产生的数据量巨大,需要高效的数据存储、处理和分析技术。

  • 通信延迟: 通信延迟会影响控制系统的响应速度,需要采用低延迟的通信技术和有效的延迟补偿方法。

  • 数据质量: WAMS 数据可能存在噪声、缺失等问题,需要进行数据清洗和校正。

  • 成本较高: 建设和维护 WAMS 和 WACS 需要较高的成本。

  • 标准化: 需要制定统一的 WAMS 和 WACS 标准,促进不同厂商设备之间的互联互通

⛳️ 运行结果

图片

图片

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值