【节点定位】基于迹线法车轮与钢轨的接触点预测后期节点位置附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要:精确预测车轮与钢轨之间的接触点位置对于轨道车辆动力学分析、磨损预测、维护计划制定以及线路状态评估至关重要。本文探讨了利用迹线法进行车轮与钢轨接触点预测,并进一步推算后期节点位置的方法。通过分析迹线法原理,详细阐述了该方法在接触点预测中的应用,并着重讨论了影响预测精度的关键因素。此外,本文还探讨了基于接触点预测结果,推算后期节点位置的策略,并分析了该方法在铁路运营维护中的潜在应用价值,以及未来的研究方向。

关键词:迹线法,车轮钢轨接触,接触点预测,后期节点位置,铁路运营维护

1. 引言

铁路运输作为一种安全、高效、便捷的交通方式,在现代社会中扮演着举足轻重的角色。铁路车辆的稳定运行与线路的安全可靠密不可分。车轮与钢轨之间的相互作用是影响列车运行稳定性和轨道结构耐久性的关键因素。精确预测车轮与钢轨的接触点位置,不仅有助于深入理解轮轨系统的动力学行为,还能为轨道磨损预测、维护计划制定以及线路状态评估提供重要的基础数据。

传统的轮轨接触分析方法,如Hertz接触理论,主要基于理想化的几何模型和静态载荷条件,难以准确反映实际运行中复杂的轮轨接触状态。随着计算机技术和数值模拟方法的快速发展,基于有限元法的轮轨接触分析已经成为一种主流方法。然而,有限元法计算量大,耗时较长,难以满足实时性要求较高的应用场景。

迹线法作为一种高效且相对简单的轮轨接触分析方法,近年来受到了广泛关注。它通过追踪车轮在钢轨表面滚动过程中形成的轨迹,来确定车轮与钢轨的接触区域,并预测接触点位置。本文旨在探讨基于迹线法的车轮与钢轨接触点预测,并进一步推算后期节点位置的方法,从而为铁路运营维护提供一种经济、高效的技术手段。

2. 迹线法原理及接触点预测

迹线法是一种基于几何约束和接触力学原理的轮轨接触分析方法。其基本思想是,假设车轮在钢轨表面滚动过程中,始终保持接触,那么车轮中心在三维空间中的运动轨迹将与钢轨表面形状密切相关。通过追踪车轮中心在空间中的运动轨迹,可以确定车轮与钢轨的接触区域,并进一步预测接触点位置。

具体而言,迹线法通常包含以下几个步骤:

  1. 建立轮轨几何模型:

     首先需要建立车轮和钢轨的三维几何模型。可以使用CAD软件或三维扫描技术获取精确的轮轨几何形状。

  2. 定义运动约束条件:

     定义车轮在钢轨表面滚动时的运动约束条件,例如车轮的滚动方向、滚动速度以及受到的外部载荷等。

  3. 追踪车轮中心轨迹:

     根据定义的运动约束条件,追踪车轮中心在空间中的运动轨迹。可以使用数值积分方法或解析方法来求解车轮中心的运动方程。

  4. 确定接触区域:

     通过分析车轮中心轨迹与钢轨表面之间的距离,确定车轮与钢轨的接触区域。通常,将车轮中心轨迹到钢轨表面的距离小于一定阈值的区域视为接触区域。

  5. 预测接触点位置:

     在确定的接触区域内,寻找车轮与钢轨距离最小的点,将其视为接触点。可以使用优化算法或迭代方法来求解接触点位置。

迹线法具有计算效率高、易于实现等优点,可以用于实时轮轨接触分析和仿真。然而,迹线法的预测精度受到多种因素的影响,例如轮轨几何模型的精度、运动约束条件的准确性、数值积分方法的选择以及接触区域的判断标准等。

3. 影响迹线法预测精度的关键因素

为了提高迹线法预测接触点位置的精度,需要深入分析影响预测精度的关键因素,并采取相应的措施进行优化。以下列举了几个重要的影响因素:

  1. 轮轨几何模型的精度:

     轮轨几何模型的精度直接影响到迹线法预测的准确性。如果轮轨几何模型存在误差,例如表面粗糙度、局部变形等,将会导致接触区域的判断出现偏差,进而影响接触点位置的预测结果。因此,需要采用高精度的三维扫描技术或CAD软件来建立轮轨几何模型,并对模型进行必要的修正和光顺处理。

  2. 运动约束条件的准确性:

     运动约束条件描述了车轮在钢轨表面滚动时的运动状态,例如滚动方向、滚动速度以及受到的外部载荷等。如果运动约束条件不准确,例如车辆运行速度估计不准、外部载荷估计偏差较大等,将会导致车轮中心轨迹的计算出现误差,从而影响接触点位置的预测精度。因此,需要采用精确的传感器或测量仪器来获取车辆运行状态信息,并建立准确的轮轨力学模型来计算外部载荷。

  3. 数值积分方法的选择:

     迹线法通常需要使用数值积分方法来求解车轮中心的运动方程。不同的数值积分方法具有不同的精度和稳定性。如果选择不合适的数值积分方法,例如积分步长过大、积分精度不足等,将会导致车轮中心轨迹的计算出现误差,从而影响接触点位置的预测精度。因此,需要根据实际情况选择合适的数值积分方法,并合理设置积分步长和积分精度。

  4. 接触区域的判断标准:

     迹线法通过分析车轮中心轨迹与钢轨表面之间的距离来确定接触区域。如果接触区域的判断标准不合理,例如阈值设置不当等,将会导致接触区域的判断出现偏差,进而影响接触点位置的预测结果。因此,需要根据实际情况选择合适的阈值,并结合其他信息,例如接触力的分布情况,来判断接触区域。

  5. 钢轨弹性变形的影响:

     在实际运行中,钢轨会发生弹性变形。如果忽略钢轨弹性变形的影响,将会导致接触区域的判断出现偏差,进而影响接触点位置的预测结果。因此,需要考虑钢轨弹性变形的影响,可以使用有限元法或其他方法来计算钢轨的弹性变形,并将变形后的钢轨几何模型用于迹线法计算。

4. 基于接触点预测推算后期节点位置的策略

基于迹线法预测的接触点位置,可以进一步推算后期节点位置,从而为轨道线路维护提供更全面的信息。以下列举了几种可能的策略:

  1. 基于磨损模型的节点位置预测:

     接触点位置信息可以作为磨损模型的输入,结合车辆运行里程、载荷情况等数据,预测钢轨的磨损量和磨损形态。通过分析磨损形态,可以预测后期节点位置的变化趋势,为轨道线路维护提供指导。常用的磨损模型包括Archard磨损模型、Falk磨损模型等。

  2. 基于塑性变形模型的节点位置预测:

     接触点位置信息可以用于分析钢轨表面的塑性变形情况。通过建立钢轨材料的塑性变形模型,可以预测钢轨表面的塑性变形量和变形形态。通过分析塑性变形形态,可以预测后期节点位置的变化趋势,为轨道线路维护提供指导。常用的塑性变形模型包括Von Mises屈服准则、Tresca屈服准则等。

  3. 基于状态监测数据的节点位置预测:

     可以将迹线法预测的接触点位置信息与轨道线路的状态监测数据,例如轨道几何尺寸、轨距、超高、高低不平顺等,进行融合分析。通过建立接触点位置与状态监测数据之间的关系模型,可以预测后期节点位置的变化趋势,为轨道线路维护提供指导。常用的状态监测数据分析方法包括回归分析、时间序列分析等。

  4. 基于人工智能的节点位置预测:

     可以利用机器学习算法,例如神经网络、支持向量机等,建立接触点位置与后期节点位置之间的关系模型。通过训练模型,可以实现基于接触点位置的后期节点位置预测。这种方法可以充分利用历史数据,并自动提取接触点位置与后期节点位置之间的复杂关系。

5. 应用价值与未来研究方向

基于迹线法的车轮与钢轨接触点预测及其后期节点位置推算,在铁路运营维护中具有广阔的应用前景:

  • 轨道磨损预测与维护计划制定:

     可以基于接触点位置信息,预测钢轨的磨损量和磨损形态,为制定合理的轨道维护计划提供依据,降低维护成本,延长轨道使用寿命。

  • 车辆动力学分析与优化设计:

     可以利用接触点位置信息,更精确地分析轮轨系统的动力学行为,为车辆的优化设计提供指导,提高列车运行的稳定性和安全性。

  • 线路状态评估与安全预警:

     可以基于接触点位置信息,评估线路的状态,例如轨道几何尺寸、表面质量等,及时发现潜在的安全隐患,实现安全预警。

  • 智能运维系统开发:

     可以将接触点位置预测技术集成到智能运维系统中,实现对轨道线路的远程监测和诊断,提高运维效率,降低运营成本。

未来研究方向可以包括:

  • 提高迹线法预测精度:

     进一步优化迹线法算法,考虑更多影响因素,例如钢轨表面粗糙度、润滑条件等,提高预测精度。

  • 开发高效的后期节点位置推算方法:

     研究更高效、更准确的后期节点位置推算方法,例如基于深度学习的预测模型,提高预测精度和速度。

  • 集成多种传感器数据:

     将迹线法预测结果与其他传感器数据进行融合,例如加速度传感器、应变传感器、图像传感器等,实现对轮轨系统的全面监测和诊断。

  • 开发智能运维系统:

     将迹线法预测技术应用于智能运维系统,实现对轨道线路的远程监测和诊断,提高运维效率,降低运营成本。

6. 结论

本文探讨了基于迹线法的车轮与钢轨接触点预测,并进一步推算后期节点位置的方法。通过分析迹线法原理,详细阐述了该方法在接触点预测中的应用,并着重讨论了影响预测精度的关键因素。此外,本文还探讨了基于接触点预测结果,推算后期节点位置的策略,并分析了该方法在铁路运营维护中的潜在应用价值,以及未来的研究方向。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

dR=0;R_l=load('yjbg_r.txt');R_l(:,1)=R_l(:,1)*(-1);% t=-0.2;% T_1=[cos(t) sin(t)%     -sin(t) cos(t)];% R_l=R_l*T_1;R_l(:,1)=R_l(:,1)-(1435/2+35.5);R_l(:,2)=-R_l(:,2)+600;R_l=sortrows(R_l,1);% R_r=[-R_l(:,1) R_l(:,2)];
🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值