✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 无线传感器网络 (WSN) 在环境监测、智能家居、智慧医疗等领域有着广泛的应用前景。然而,由于无线传感器节点通常由电池供电,能量有限,节点能量耗尽导致的覆盖空洞问题严重影响了网络的覆盖范围、连接性和整体寿命。为了减轻能量耗尽节点造成的覆盖空洞,本文提出了一种基于粒子群优化 (PSO) 算法的无线传感器网络节点优化部署方法。该方法通过优化节点位置,尽可能实现网络覆盖的最大化,同时兼顾节点之间的连通性,从而显著提升网络的健壮性和寿命,并减少覆盖空洞的产生。本文将详细阐述该优化模型的建立、PSO 算法的实现以及仿真实验结果分析,以验证该方法在改善 WSN 覆盖率、连通性和网络寿命方面的有效性。
关键词: 无线传感器网络 (WSN); 覆盖空洞; 节点部署; 粒子群优化 (PSO); 能量消耗; 网络寿命
1. 引言
无线传感器网络 (WSN) 是一种由大量廉价、低功耗、具有感知、计算和通信能力的传感器节点组成的自组织网络。这些节点通过无线通信的方式协作完成特定任务,如环境监测、目标跟踪、智能控制等。WSN 在环境监测、农业、工业、医疗保健等领域得到了广泛的应用。然而,由于传感器节点通常部署在无人值守或难以维护的区域,节点依靠电池供电,能量有限,因此能量管理和网络寿命成为 WSN 设计中的关键挑战。
节点能量耗尽会导致网络覆盖空洞的产生。覆盖空洞是指网络中存在某些区域没有被任何传感器节点覆盖,导致该区域的信息无法被感知和传输。覆盖空洞不仅降低了网络的覆盖率,还可能导致网络连通性的中断,影响整个网络的功能和性能。因此,如何有效地部署传感器节点,以最大限度地延长网络寿命,并减少覆盖空洞的产生,成为 WSN 研究中的一个重要课题。
现有的节点部署策略主要分为确定性部署和随机部署。确定性部署需要预先了解环境信息,并将节点按照一定的规律进行部署,例如网格部署、蜂窝部署等。这种方法虽然能够保证较高的覆盖率,但部署成本高,且难以适应复杂多变的环境。随机部署则无需预先了解环境信息,将节点随机撒布在目标区域。这种方法部署成本低,易于实施,但覆盖率难以保证,容易产生覆盖空洞。
为了克服上述方法的不足,近年来,基于优化算法的节点部署策略得到了广泛的关注。优化算法可以通过迭代优化,寻找最佳的节点位置,从而在覆盖率、连通性和网络寿命之间取得平衡。常见的优化算法包括遗传算法 (GA)、模拟退火算法 (SA)、蚁群算法 (ACO) 和粒子群优化 (PSO) 算法等。其中,PSO 算法具有原理简单、易于实现、收敛速度快等优点,在 WSN 节点部署优化中得到了广泛的应用。
2. 相关研究
针对 WSN 节点部署优化问题,国内外学者已经进行了大量的研究。
-
基于覆盖率最大化的节点部署: 这类方法旨在通过优化节点位置,最大化网络的覆盖面积。例如,文献 [1] 提出了一种基于遗传算法的节点部署方法,通过优化节点的位置,最大化网络的覆盖率,同时考虑了节点之间的连通性。文献 [2] 则提出了一种基于蚁群算法的节点部署方法,利用蚂蚁的群体智能,寻找最佳的节点位置,以提高网络的覆盖率。
-
基于连通性增强的节点部署: 这类方法旨在通过优化节点位置,增强节点之间的连通性,保证网络信息的可靠传输。例如,文献 [3] 提出了一种基于模拟退火算法的节点部署方法,通过优化节点的位置,提高节点之间的连接概率,从而增强网络的连通性。文献 [4] 则提出了一种基于粒子群优化算法的节点部署方法,通过优化节点的位置,最小化节点之间的距离,从而提高网络的连通性。
-
基于能量均衡的节点部署: 这类方法旨在通过优化节点位置,均衡各个节点的能量消耗,延长网络的寿命。例如,文献 [5] 提出了一种基于遗传算法的节点部署方法,通过优化节点的位置,使各个节点的负载均衡,从而延长网络的寿命。文献 [6] 则提出了一种基于粒子群优化算法的节点部署方法,通过优化节点的位置,使各个节点与 sink 节点的距离大致相等,从而均衡各个节点的能量消耗。
尽管现有的研究已经取得了一些进展,但仍然存在一些挑战。例如,大多数研究只关注覆盖率、连通性或能量消耗中的一个或两个方面,而很少同时考虑这三个方面。此外,大多数研究假设节点具有相同的能量和通信范围,而忽略了节点之间的异构性。因此,需要进一步研究更加有效的节点部署策略,以解决上述挑战。
3. 基于粒子群优化算法的节点部署模型
本节将详细介绍基于粒子群优化算法的 WSN 节点部署模型的建立。该模型旨在通过优化节点位置,最大化网络的覆盖率,同时保证节点之间的连通性,并尽可能均衡各个节点的能量消耗,从而延长网络的寿命,并减少覆盖空洞的产生。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇