【无人机设计与控制】 鹅算法(GOOSE)求解复杂城市地形下无人机避障三维航迹规划

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要:无人机(UAV)作为一种灵活、高效的飞行平台,在城市环境中的应用日益广泛。然而,复杂的城市地形,密集的建筑物,以及潜在的障碍物,给无人机自主导航和安全飞行带来了严峻挑战。三维航迹规划作为无人机实现自主飞行的关键技术,需要在复杂的城市环境中寻求一条安全、高效、且符合无人机自身约束的飞行路径。针对这一问题,本文提出一种基于鹅算法(GOOSE, Goose Optimization Algorithm) 的无人机避障三维航迹规划方法。该方法利用鹅算法强大的全局搜索能力,在高维解空间中寻找最优的航迹点序列,同时结合惩罚函数处理约束条件,确保无人机避开障碍物,并满足飞行安全和性能要求。实验结果表明,与传统算法相比,所提出的GOOSE算法在复杂城市地形下能够更有效地生成安全可行的三维航迹,并且具有更快的收敛速度和更好的鲁棒性。

关键词:无人机;三维航迹规划;避障;鹅算法;城市地形

1. 引言

随着无人机技术的飞速发展,无人机在城市应用领域展现出巨大的潜力,例如:物流配送、城市安防、环境监测、以及基础设施巡检等。然而,城市环境的复杂性对无人机导航提出了更高的要求。密集的高楼大厦、复杂的交通网络、以及动态变化的障碍物,使得无人机在城市环境中飞行面临着严峻的安全挑战。因此,如何高效地规划无人机在复杂城市地形下的安全可行三维航迹,是无人机城市应用亟待解决的关键问题。

三维航迹规划是指在给定起点和终点的情况下,为无人机寻找一条在三维空间中符合约束条件的最优路径。这条路径需要尽可能地避开障碍物,同时满足无人机的动力学约束,例如:最大飞行角度、最大飞行速度、以及最小转弯半径等。传统的三维航迹规划方法包括:A算法、RRT算法、以及各种基于优化的方法。A算法和RRT算法主要通过搜索的方式来寻找可行路径,计算复杂度较高,难以应对复杂环境。基于优化的方法,例如:梯度下降法,容易陷入局部最优解,难以保证全局最优性。

近年来,智能优化算法在解决复杂优化问题方面表现出强大的能力。例如:遗传算法(GA)、粒子群优化算法(PSO)、以及蚁群算法(ACO)。这些算法通过模拟自然界中的生物行为,在解空间中进行全局搜索,能够有效地克服局部最优解的问题。

鹅算法(GOOSE, Goose Optimization Algorithm) 是一种新兴的智能优化算法,灵感来源于鹅群迁徙过程中的导航和觅食行为。该算法具有结构简单、参数少、全局搜索能力强等优点,在解决复杂优化问题方面具有良好的潜力。

本文针对复杂城市地形下无人机避障三维航迹规划问题,提出一种基于鹅算法(GOOSE)的航迹规划方法。该方法将无人机航迹规划问题转化为优化问题,通过优化一系列航迹点的位置,从而获得最优的飞行路径。通过引入惩罚函数,将障碍物规避、飞行安全、以及无人机自身约束等因素纳入优化目标,从而确保规划出的航迹安全可行。

2. 相关工作

无人机航迹规划一直是研究的热点领域,国内外学者提出了许多有效的算法。

  • 基于搜索的算法:

     例如,A算法及其变种(如D算法),通过启发式搜索的方式寻找最优路径。RRT算法及其改进算法(如RRT*算法)则通过随机采样的方式构建搜索树,逐步扩展到目标点。这些算法的优点是能够保证找到可行路径,但计算复杂度较高,难以应对复杂环境。

  • 基于优化的算法:

     这类算法通常将航迹规划问题转化为优化问题,通过优化目标函数来寻找最优航迹。常用的优化方法包括:梯度下降法、序列二次规划(SQP)、以及凸优化方法。这些算法的优点是计算效率高,但容易陷入局部最优解。

  • 基于智能优化算法:

     智能优化算法近年来在航迹规划领域得到了广泛应用。例如,遗传算法(GA)通过模拟生物进化过程来搜索最优解。粒子群优化算法(PSO)通过模拟鸟群的飞行行为来寻找最优解。蚁群算法(ACO)通过模拟蚂蚁觅食行为来构建最优路径。这些算法具有较强的全局搜索能力,能够有效地克服局部最优解的问题。

然而,现有的航迹规划方法在应对复杂城市地形时仍然存在一些挑战。例如,A*算法和RRT算法的搜索空间会随着城市规模的增大而呈指数级增长,导致计算复杂度过高。基于优化的算法容易受到城市环境的复杂性影响,陷入局部最优解。而智能优化算法的参数设置和算法性能对航迹规划结果有着显著的影响。

3. 基于鹅算法的无人机三维航迹规划方法

本文提出一种基于鹅算法(GOOSE)的无人机避障三维航迹规划方法。该方法首先将无人机航迹表示为一系列航迹点,然后利用鹅算法优化这些航迹点的位置,从而获得最优的飞行路径。在优化过程中,通过引入惩罚函数,将障碍物规避、飞行安全、以及无人机自身约束等因素纳入优化目标,从而确保规划出的航迹安全可行。

3.1 航迹表示

3.2 目标函数

我们的目标是寻找一条安全、高效、且符合无人机自身约束的飞行路径。因此,我们将目标函数定义为以下几个部分:

  • 路径长度: 为了使航迹尽可能短,我们希望最小化路径长度。路径长度可以通过计算相邻航迹点之间的距离之和来近似:

    𝐽1=∑𝑖=0𝑛∣∣𝑃𝑖+1−𝑃𝑖∣∣

  • 平滑性: 为了使航迹更加平滑,我们希望最小化航迹的曲率变化。曲率变化可以通过计算相邻航迹段之间的角度变化来近似:

    𝐽2=∑𝑖=1𝑛−1arccos⁡((𝑃𝑖+1−𝑃𝑖)⋅(𝑃𝑖−𝑃𝑖−1)∣∣𝑃𝑖+1−𝑃𝑖∣∣⋅∣∣𝑃𝑖−𝑃𝑖−1∣∣)

  • 避障惩罚: 为了确保航迹避开障碍物,我们引入避障惩罚项。如果航迹点距离障碍物过近,则会受到惩罚。

    𝐽3=∑𝑖=1𝑛{0,if 𝑑(𝑃𝑖,𝑂)>𝑑𝑠𝑎𝑓𝑒𝐾⋅(𝑑𝑠𝑎𝑓𝑒−𝑑(𝑃𝑖,𝑂))2,otherwise

  • 高度约束惩罚: 为了保证无人机飞行高度在合理范围内,防止撞击地面或者违反空域管制,我们引入高度约束惩罚项。

𝐽4=∑𝑖=1𝑛{𝐾⋅(𝑧𝑚𝑖𝑛−𝑧𝑖)2,if 𝑧𝑖<𝑧𝑚𝑖𝑛0,if 𝑧𝑚𝑖𝑛≤𝑧𝑖≤𝑧𝑚𝑎𝑥𝐾⋅(𝑧𝑖−𝑧𝑚𝑎𝑥)2,if 𝑧𝑖>𝑧𝑚𝑎𝑥

𝐽=𝑤1𝐽1+𝑤2𝐽2+𝑤3𝐽3+𝑤4𝐽4

3.3 鹅算法(GOOSE)

鹅算法(GOOSE)是一种模拟鹅群迁徙觅食行为的优化算法。该算法主要包含以下几个步骤:

  1. 初始化种群: 随机生成 𝑁N 个鹅的位置,每个鹅的位置代表一个可能的航迹点序列。

  2. 计算适应度: 根据目标函数计算每个鹅的适应度值。适应度值越小,代表航迹越好。

  3. 确定领导者: 选择适应度值最好的鹅作为领导者。领导者负责引导鹅群的迁徙方向。

  4. 更新鹅的位置: 根据以下公式更新鹅的位置:

    𝑥𝑖(𝑡+1)=𝑥𝑖(𝑡)+𝛼⋅𝑟𝑎𝑛𝑑()⋅(𝑥𝑙𝑒𝑎𝑑𝑒𝑟(𝑡)−𝑥𝑖(𝑡))+𝛽⋅𝑟𝑎𝑛𝑑()⋅(𝑥𝑟𝑎𝑛𝑑(𝑡)−𝑥𝑖(𝑡))

  5. 边界处理: 检查更新后的鹅的位置是否超出了边界。如果超出了边界,则将其拉回边界。

  6. 迭代更新: 重复步骤 2 到步骤 5,直到满足终止条件(例如:达到最大迭代次数)。

  7. 输出最优解: 输出适应度值最好的鹅的位置,作为最优的航迹点序列。

3.4 算法流程

基于鹅算法的无人机避障三维航迹规划方法的流程如下:

  1. 初始化:

     设置无人机的起点和终点,以及其他参数,例如:航迹点数量、鹅群规模、最大迭代次数、惩罚系数、权重系数等。

  2. 种群初始化:

     随机生成初始种群,每个个体代表一组航迹点坐标。

  3. 适应度评估:

     根据目标函数计算每个个体的适应度值。

  4. 领导者选择:

     选择适应度值最好的个体作为领导者。

  5. 位置更新:

     根据鹅算法的位置更新公式更新每个个体的位置。

  6. 边界处理:

     对更新后的个体位置进行边界处理。

  7. 循环迭代:

     重复步骤 3 到步骤 6,直到达到最大迭代次数。

  8. 输出最优解:

     输出适应度值最好的个体所代表的航迹点序列,作为最终的规划结果。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值