基于BILSTM、GMDH 及遗传COVID 预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

COVID-19疫情自2019年末爆发以来,对全球公共卫生和社会经济造成了巨大冲击。有效预测疫情发展趋势,对于制定合理的防控策略、优化医疗资源配置以及减少社会经济损失至关重要。然而,疫情发展受到多种复杂因素的影响,例如病毒变异、人口流动、防控措施以及疫苗接种情况等,使得传统的统计模型难以准确捕捉其非线性、时变的特性。因此,发展更加智能化的预测模型,以提高预测精度和可靠性,成为一项重要的研究任务。本文将探讨一种基于双向长短期记忆网络(BiLSTM)、群体方法数据处理(GMDH)以及遗传算法(GA)的COVID-19疫情预测模型,并分析其优势、挑战以及未来发展方向。

一、研究背景与意义

传统的疫情预测模型,例如SEIR模型及其变种,主要依赖于对传染病动力学原理的建模,并通过微分方程描述人群在不同状态之间的转移。这些模型在假设条件较为理想的情况下能够提供一定的预测能力,但通常难以应对复杂多变的实际情况。例如,SEIR模型需要准确估计各个参数,而这些参数往往难以精确获取,且易受到疫情发展阶段的影响。此外,SEIR模型对于非线性关系的捕捉能力有限,难以适应疫情传播过程中存在的突变、加速或减缓等现象。

近年来,深度学习技术在时间序列预测领域展现出强大的潜力。循环神经网络(RNN)及其变种,例如长短期记忆网络(LSTM)和门控循环单元(GRU),能够有效地处理序列数据,并学习长期依赖关系。然而,传统的LSTM模型通常只能利用过去的信息进行预测,忽略了未来信息对当前预测的影响。双向长短期记忆网络(BiLSTM)通过同时考虑过去和未来的信息,能够更全面地捕捉时间序列数据的特征,从而提高预测精度。

群体方法数据处理(GMDH)是一种自组织数据挖掘方法,能够自动选择合适的模型结构和参数,并避免过度拟合。GMDH模型通过分层迭代的方式,逐步构建复杂的非线性模型,适用于处理高度非线性的问题。然而,GMDH模型在处理大规模数据时容易陷入局部最优解,需要借助优化算法进行改进。

遗传算法(GA)是一种基于自然选择和遗传机制的优化算法,具有全局搜索能力和并行计算能力。通过将遗传算法与BiLSTM和GMDH模型相结合,可以有效地优化模型参数和结构,提高预测精度。

因此,本文提出的基于BiLSTM、GMDH及遗传算法的COVID-19疫情预测模型,旨在克服传统模型的局限性,提高预测精度和可靠性,为疫情防控提供科学依据。

二、模型构建

本文提出的模型框架主要包括数据预处理、BiLSTM特征提取、GMDH模型构建以及遗传算法优化四个步骤。

  • 数据预处理: 首先,收集COVID-19疫情相关的历史数据,例如每日新增确诊病例数、死亡病例数、治愈病例数等。然后,对数据进行清洗、缺失值填充以及归一化处理,以提高模型训练效率和精度。此外,还可以根据实际情况加入其他相关因素,例如人口密度、气象数据、交通流量等,以丰富模型的输入特征。

  • BiLSTM特征提取: 利用BiLSTM网络学习疫情数据的时序特征。BiLSTM网络包含前向和后向两个LSTM层,分别处理过去和未来的信息。通过将两个LSTM层的输出进行合并,可以得到更加全面的特征表示。BiLSTM网络可以有效地捕捉疫情数据的非线性关系和长期依赖关系,为GMDH模型的构建提供高质量的特征输入。

  • GMDH模型构建: 基于BiLSTM提取的特征,构建GMDH模型进行疫情预测。GMDH模型通过分层迭代的方式,逐步构建复杂的非线性模型。每一层都包含多个节点,每个节点代表一个多项式回归模型。通过对节点进行选择和组合,可以构建出能够有效拟合疫情数据的模型。

  • 遗传算法优化: 利用遗传算法优化BiLSTM和GMDH模型的参数和结构。遗传算法通过模拟自然选择和遗传机制,不断迭代优化模型的适应度。适应度函数可以定义为预测误差的倒数,即预测精度越高,适应度越高。通过遗传算法的优化,可以有效地提高模型的预测精度和泛化能力。

三、实验结果与分析

为了验证本文提出的模型的有效性,我们选取了几个国家或地区的COVID-19疫情数据进行实验。实验结果表明,该模型在预测精度方面优于传统的SEIR模型和单一的LSTM模型。具体而言,该模型在短期预测(例如未来一周)能够获得较高的精度,而在长期预测(例如未来一个月)的精度略有下降,但仍优于其他模型。

此外,我们还对模型进行了敏感性分析,研究了不同因素对预测结果的影响。结果表明,新增确诊病例数是影响预测结果的最重要因素,而人口密度和交通流量等因素也具有一定的影响。

四、模型挑战与未来发展方向

尽管本文提出的模型取得了一定的成果,但仍存在一些挑战需要克服:

  • 数据质量:

     疫情数据的准确性和完整性对模型预测精度至关重要。然而,实际数据往往存在缺失、错误和延迟等问题,需要进一步的数据清洗和处理。

  • 模型复杂度:

     BiLSTM和GMDH模型都具有一定的复杂度,需要大量的计算资源和训练时间。如何提高模型的效率和可扩展性,是一个重要的研究方向。

  • 可解释性:

     深度学习模型的黑盒特性限制了其在实际应用中的可信度。如何提高模型的可解释性,以便更好地理解疫情传播机制和预测结果,是一个重要的研究方向。

未来,可以从以下几个方面进一步改进该模型:

  • 引入更多外部因素:

     将更多影响疫情传播的因素纳入模型,例如疫苗接种情况、社会经济状况、政府政策等,以提高模型的预测精度。

  • 改进模型结构:

     探索更加有效的BiLSTM和GMDH模型结构,例如引入注意力机制、卷积神经网络等,以提高模型的特征提取能力和泛化能力。

  • 研究不确定性量化:

     对预测结果的不确定性进行量化,以便更好地评估预测风险和制定防控策略。

  • 开发在线预测平台:

     开发一个在线预测平台,能够实时预测疫情发展趋势,为公众和政府提供科学依据。

五、结论

本文提出了一种基于BiLSTM、GMDH及遗传算法的COVID-19疫情预测模型,旨在克服传统模型的局限性,提高预测精度和可靠性。实验结果表明,该模型在预测精度方面优于传统的SEIR模型和单一的LSTM模型。然而,该模型仍存在一些挑战需要克服,未来可以从数据质量、模型复杂度、可解释性等方面进行改进。相信随着研究的不断深入,该模型将在疫情预测领域发挥更大的作用,为疫情防控提供更加科学有效的支持。 本研究也希望能够为其他传染病的预测和防控提供借鉴,为构建更安全、健康的社会贡献力量。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值