✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
近年来,随着能源危机和环境问题的日益突出,微网作为一种集成分布式电源、储能装置和可控负荷的新型电力系统架构,受到了广泛关注。微网能够有效利用可再生能源,提高供电可靠性,降低能源消耗,并为用户提供更加灵活的电力服务。然而,微网的稳定运行面临着可再生能源发电的间歇性和波动性带来的挑战。此外,传统微网调度通常缺乏与用户侧的有效互动,难以充分挖掘用户侧的潜力以优化系统运行。
与此同时,电动汽车(EV)作为一种新兴的移动储能资源和可控负荷,其大规模接入电力系统将对电网产生显著影响。一方面,EV充电负荷的集中性和随机性可能加剧电网的峰谷差,增加电网运行压力;另一方面,EV也具有灵活的充放电特性,通过合理的调度,EV能够为电网提供调峰、调频、电压支撑等辅助服务,提高电网的稳定性和经济性。
因此,如何充分利用电动汽车的灵活性,实现微网的多时间尺度协调调度,已成为当前微网研究领域的一个重要方向。本文旨在对考虑电动汽车灵活性的微网多时间尺度协调调度问题进行深入探讨,分析其面临的挑战,并总结现有研究成果,最终展望未来发展趋势。
一、微网多时间尺度协调调度的重要性与挑战
微网的多时间尺度协调调度是指在不同的时间尺度上(如日计划、小时计划、实时控制)对微网内的各种资源进行优化配置,以实现微网的经济性、可靠性和环保性目标。这种分层控制策略能够有效应对不同时间尺度上的波动性和不确定性,提高微网的运行效率。
然而,微网的多时间尺度协调调度面临着以下几个主要挑战:
- 可再生能源发电的间歇性和波动性:
风能和太阳能等可再生能源发电具有明显的间歇性和波动性,给微网的稳定运行带来挑战。需要通过储能系统、需求侧响应等方式来平抑可再生能源发电的波动,保障供电的可靠性。
- 负荷需求的随机性和不确定性:
用户负荷需求受多种因素影响,具有较强的随机性和不确定性。精确预测负荷需求是实现优化调度的前提,但预测误差不可避免,需要采用鲁棒优化等方法来提高调度的适应性。
- 电动汽车充电行为的复杂性:
电动汽车的充电行为受用户出行习惯、电价政策、电池状态等多种因素影响,具有较大的复杂性和不确定性。需要建立合理的电动汽车充电行为模型,准确预测充电负荷,并充分挖掘电动汽车的灵活性潜力。
- 多时间尺度优化问题的求解难度:
微网的多时间尺度协调调度涉及到多个时间尺度上的优化问题,优化变量多,约束条件复杂,求解难度较大。需要开发高效的优化算法,如模型预测控制、分布式优化等,以实现快速求解。
- 信息安全和隐私保护:
在微网的运行过程中,需要收集用户的用电信息和电动汽车的充电信息。如何保障信息安全和用户隐私,避免信息泄露和恶意攻击,是一个重要的挑战。
二、电动汽车灵活性在微网调度中的作用
电动汽车作为一种灵活的储能资源和可控负荷,在微网调度中具有重要作用:
- 削峰填谷,平抑负荷波动:
电动汽车可以根据电网的需求,在用电低谷时段充电,在用电高峰时段放电,从而有效削峰填谷,平抑负荷波动,降低电网的峰谷差。
- 平抑可再生能源发电的波动:
电动汽车可以吸收可再生能源发电的过剩能量,并在可再生能源发电不足时释放能量,从而平抑可再生能源发电的波动,提高可再生能源的利用率。
- 提供调频、调压等辅助服务:
电动汽车可以通过快速调整充放电功率,为电网提供调频、调压等辅助服务,提高电网的稳定性和可靠性。
- 降低运行成本,提高经济效益:
通过合理调度电动汽车的充放电行为,可以降低微网的运行成本,提高经济效益。例如,在电价较低时段充电,在电价较高时段放电,可以获取一定的收益。
三、考虑电动汽车灵活性的微网多时间尺度协调调度模型与方法
目前,针对考虑电动汽车灵活性的微网多时间尺度协调调度问题,已经提出了多种模型与方法,主要可以分为以下几类:
- 基于优化的调度模型:
这类模型通常以微网的经济性、可靠性和环保性为目标,建立包含分布式电源、储能系统和电动汽车的优化调度模型。根据不同的时间尺度,可以分为日计划、小时计划和实时控制模型。常用的优化算法包括线性规划、混合整数规划、二次规划等。在模型中,需要考虑电动汽车的充放电约束、电池寿命约束以及用户的出行需求等因素。
- 基于模型预测控制的调度方法:
模型预测控制(MPC)是一种滚动优化的控制方法,能够有效应对系统的动态变化和不确定性。在微网调度中,可以利用MPC来预测未来一段时间内的负荷需求、可再生能源发电量以及电动汽车的充放电行为,并根据预测结果进行优化调度。MPC具有良好的鲁棒性和适应性,能够有效提高微网的运行效率和稳定性。
- 基于分布式优化的调度方法:
分布式优化是一种将复杂的优化问题分解为多个子问题,并由各个子系统并行求解的方法。在微网调度中,可以将整个微网分解为多个子区域,每个子区域负责优化其自身的资源配置,并通过信息交互来实现全局优化。分布式优化能够有效降低计算复杂度,提高求解效率,并增强系统的可扩展性。常用的分布式优化算法包括交替方向乘子法(ADMM)、近似牛顿法等。
- 基于强化学习的调度方法:
强化学习(RL)是一种通过与环境交互学习最优策略的机器学习方法。在微网调度中,可以将微网的运行环境建模为一个马尔可夫决策过程(MDP),并利用RL算法训练一个最优的调度策略。RL算法能够有效处理不确定性和动态变化,并能够学习到复杂的调度策略。常用的RL算法包括Q-learning、Deep Q-Network (DQN)、Policy Gradient等。
- 基于多智能体系统的调度方法:
多智能体系统(MAS)是一种由多个智能体组成的系统,每个智能体具有独立的决策能力和行动能力,并且能够通过协作来实现共同的目标。在微网调度中,可以将微网内的各种资源建模为智能体,例如,分布式电源、储能系统和电动汽车都可以被建模为智能体。每个智能体根据其自身的利益和目标进行决策,并通过与其他智能体的交互来实现全局优化。
四、未来发展趋势
随着电动汽车技术的不断发展和智能电网技术的日益成熟,考虑电动汽车灵活性的微网多时间尺度协调调度将朝着以下几个方向发展:
- 更加精细化的模型和算法:
未来的研究将更加注重电动汽车充电行为的建模精度,更加精确地预测电动汽车的充电负荷。同时,需要开发更加高效的优化算法,以应对大规模电动汽车接入带来的计算挑战。
- 更加智能化的调度策略:
未来将更加注重利用人工智能技术,如深度学习、强化学习等,开发更加智能化的调度策略。这些智能化的调度策略能够更好地应对不确定性和动态变化,提高微网的运行效率和稳定性。
- 更加灵活的需求侧响应机制:
未来将更加注重挖掘用户侧的潜力,开发更加灵活的需求侧响应机制。通过激励用户参与微网调度,可以有效平抑负荷波动,提高微网的运行效率。
- 更加完善的能源交易机制:
未来将更加注重建立完善的能源交易机制,鼓励电动汽车参与微网的能源交易。通过能源交易,可以实现微网内各种资源的优化配置,提高经济效益。
- 更加注重信息安全和隐私保护:
未来将更加注重信息安全和用户隐私保护,采用先进的加密技术和隐私保护技术,确保用户的信息安全。
五、结论
考虑电动汽车灵活性的微网多时间尺度协调调度是未来微网发展的重要方向。通过充分利用电动汽车的灵活性,可以有效提高微网的经济性、可靠性和环保性。本文对微网多时间尺度协调调度的重要性和挑战进行了深入分析,并总结了现有研究成果,最终展望了未来发展趋势。相信随着技术的不断发展和研究的不断深入,考虑电动汽车灵活性的微网多时间尺度协调调度将为构建更加清洁、高效和智能的电力系统做出重要贡献。未来的研究需要更加注重模型精度、算法效率、智能化水平以及信息安全和隐私保护,以实现更加完善的微网调度体系。
⛳️ 运行结果
🔗 参考文献
[1] 黄弦超、封钰、丁肇豪.多微网多时间尺度交易机制设计和交易策略优化[J].电力系统自动化, 2020, 44(24):12.DOI:10.7500/AEPS20200601001.
[2] 聂彩静.基于博弈论的新能源系统多尺度协同调度策略研究[D].中原工学院,2023.
[3] 裴玮,邓卫,沈子奇,et al.可再生能源与热电联供混合微网能量协调优化[J].电力系统自动化, 2014, 000(016):9-15.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇