【电力系统】考虑寿命损耗的微网电池储能容量优化配置附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着能源结构的转型和分布式发电技术的快速发展,微网作为一种新型的电力系统形态,在提高能源利用效率、降低环境污染、增强供电可靠性等方面展现出巨大的潜力。电池储能系统(Battery Energy Storage System, BESS)作为微网中的关键组成部分,能够平滑可再生能源的波动性、提供调频调压服务、增强系统稳定性,从而优化微网的整体性能。然而,BESS的部署和运行成本高昂,且其寿命受到多种因素的影响,因此,如何进行BESS的容量优化配置,在满足微网运行需求的同时,最大限度地延长BESS的使用寿命,降低总成本,成为了一个重要的研究课题。本文将围绕“考虑寿命损耗的微网电池储能容量优化配置”这一主题,深入探讨BESS容量配置的影响因素、常用的优化方法、以及未来的发展趋势,旨在为微网BESS的合理配置提供理论支撑和实践指导。

一、微网BESS容量配置的重要性及影响因素

微网BESS容量配置的合理性直接关系到微网的经济性、可靠性和运行效率。容量配置过小,可能无法满足功率缺额的需求,导致系统运行不稳定,甚至出现停电事故;容量配置过大,则会增加初始投资成本,并且由于BESS并非始终处于最优工作状态,造成资源浪费,降低经济效益。因此,合理的BESS容量配置至关重要。

影响BESS容量配置的因素众多,可以归纳为以下几个方面:

  • **负荷需求特性:**微网的负荷类型、负荷曲线的波动性、以及负荷功率预测的准确性都会影响BESS的容量需求。对于负荷波动较大,峰谷差明显的微网,需要配置较大容量的BESS来平抑负荷波动,提高供电质量。

  • **可再生能源出力特性:**微网中可再生能源的种类、装机容量、出力功率的时序特性、以及出力预测的准确性,同样是影响BESS容量配置的关键因素。例如,光伏发电的出力具有间歇性和波动性,需要BESS来平滑其输出,保障系统功率平衡。

  • **电网互动策略:**微网与主电网的互动方式,例如是否允许功率反送,以及功率交易的价格机制,会影响BESS的充放电策略,进而影响其容量需求。允许功率反送的微网,可以减少BESS的容量配置。

  • **BESS自身特性:**BESS的能量密度、功率密度、充放电效率、循环寿命、以及初始投资成本,都是影响容量配置的重要因素。不同类型的BESS,其特性差异明显,适用于不同的应用场景。例如,锂离子电池具有能量密度高、循环寿命长等优点,适用于对能量需求较高的场景;铅酸电池则成本较低,适用于对成本敏感的应用。

  • **运行策略与控制策略:**BESS的充放电策略和控制策略直接影响其运行状态和寿命损耗。合理的充放电策略可以减少BESS的深度放电,延长其使用寿命。例如,采取削峰填谷策略,可以减少电网高峰时段的用电负荷,降低电费支出,同时还可以平滑负荷曲线,降低BESS的充放电频率,延长其寿命。

  • **寿命损耗模型:**不同类型的BESS具有不同的寿命损耗特性。精确的寿命损耗模型是进行容量优化配置的基础。需要考虑充放电深度(Depth of Discharge, DOD)、充放电速率(C-rate)、温度、以及荷电状态(State of Charge, SOC)等因素对BESS寿命的影响。

二、常用的微网BESS容量优化配置方法

针对微网BESS容量优化配置问题,国内外学者提出了多种方法,可以大致分为以下几类:

  • **经验法与规则法:**这类方法基于经验数据或行业标准,例如根据负荷需求或可再生能源装机容量的比例来确定BESS的容量。该方法简单易行,但缺乏理论依据,难以保证配置结果的优化性。

  • **解析法:**解析法通过建立数学模型,推导BESS容量与系统性能之间的关系,从而获得最优容量配置。例如,可以通过能量平衡方程来确定BESS的最小容量,再根据系统运行成本和可靠性指标进行优化。

  • **数值优化算法:**这类方法利用数值优化算法,例如线性规划(Linear Programming, LP)、混合整数线性规划(Mixed Integer Linear Programming, MILP)、遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)等,对BESS的容量进行优化配置。这些算法能够处理复杂的约束条件,并找到全局或局部最优解。

  • **仿真优化法:**仿真优化法结合仿真软件和优化算法,通过模拟微网的运行情况,评估不同容量配置方案的性能,从而确定最优容量配置。常用的仿真软件包括MATLAB/Simulink、DIgSILENT PowerFactory、以及EnergyPlus等。

  • **混合优化方法:**混合优化方法结合了多种优化方法的优点,例如先使用解析法确定BESS的最小容量范围,再使用数值优化算法进行精细优化。

在这些方法中,考虑寿命损耗的优化算法尤为重要。这类算法通常需要建立BESS的寿命损耗模型,并将寿命损耗纳入优化目标函数中,从而在降低系统运行成本的同时,最大限度地延长BESS的使用寿命。常用的寿命损耗模型包括安时吞吐量模型、雨流计数法、以及经验模型等。

三、考虑寿命损耗的容量优化配置的关键技术

在进行考虑寿命损耗的容量优化配置时,以下几个关键技术至关重要:

  • **精确的BESS寿命损耗模型:**准确的寿命损耗模型是优化配置的基础。需要综合考虑DOD、C-rate、温度、以及SOC等因素对BESS寿命的影响,并能够准确预测BESS在不同运行工况下的寿命损耗。

  • **优化的充放电控制策略:**合理的充放电控制策略可以减少BESS的深度放电,延长其使用寿命。例如,可以采用荷电状态管理策略,避免BESS长时间处于高SOC或低SOC状态;也可以采用速率限制策略,限制BESS的充放电速率,降低其损耗。

  • **考虑经济性的优化目标函数:**优化目标函数需要综合考虑BESS的投资成本、运行成本、维护成本、以及寿命损耗成本。可以通过建立生命周期成本模型,评估不同容量配置方案的经济效益。

  • **高效的优化算法:**选择合适的优化算法,可以快速有效地找到最优容量配置方案。例如,可以使用遗传算法或粒子群优化算法等智能优化算法,对复杂的优化问题进行求解。

四、未来发展趋势

未来,随着BESS技术的不断进步和微网应用的日益广泛,微网BESS容量优化配置将呈现以下发展趋势:

  • **更加精确的寿命损耗模型:**随着对BESS寿命特性的深入研究,将建立更加精确的寿命损耗模型,能够更好地预测BESS在不同运行工况下的寿命。

  • **基于人工智能的优化算法:**人工智能技术,例如机器学习和深度学习,将被应用于BESS容量优化配置中。可以通过学习历史数据,建立预测模型,从而更准确地预测负荷需求和可再生能源出力,优化BESS的充放电策略。

  • **考虑多种储能技术的混合配置:**不同类型的储能技术具有不同的特性,例如,锂离子电池适用于高频充放电,而抽水蓄能适用于长时间储能。未来,将考虑多种储能技术的混合配置,以提高储能系统的整体性能。

  • **面向能源互联网的容量优化配置:**随着能源互联网的发展,微网将与其他微网或主电网进行能量交互。因此,BESS容量优化配置需要考虑能源互联网的整体运行情况,实现全局优化。

五、结论

微网BESS容量优化配置是提高微网经济性、可靠性和运行效率的关键环节。合理的容量配置需要在满足系统运行需求的同时,最大限度地延长BESS的使用寿命,降低总成本。本文从微网BESS容量配置的重要性及影响因素、常用的优化方法、考虑寿命损耗的容量优化配置的关键技术、以及未来的发展趋势等方面进行了深入探讨。随着技术的不断进步,微网BESS容量优化配置将更加智能化、精细化,为微网的可持续发展提供更强大的支撑。 未来研究方向可以集中在以下几个方面:开发更精确的寿命损耗模型,结合人工智能技术优化充放电策略,以及研究多种储能技术的混合配置,从而实现更经济、更可靠、更环保的微网系统。

⛳️ 运行结果

🔗 参考文献

[1] 辛曦,欧阳森,黄祎,等.考虑储能容量衰减的多保供电型微网最优经济配置及可靠性评估[J].电力建设, 2024, 45(10):100-113.

[2] 冯紫妍,许仪勋,汪凯琳,等.考虑寿命损耗的微网电池储能容量优化配置[J].电源学报, 2024(001):022.

[3] 孙运志,蒋德玉,张盛林,等.计及电池寿命损耗的多能源微网储能优化配置[J].电力系统及其自动化学报, 2021.DOI:10.19635/j.cnki.csu-epsa.000728.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值