✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
PID (比例-积分-微分) 控制器因其结构简单、易于实现和鲁棒性高等优点,在工业控制领域得到了广泛应用。然而,PID控制器的参数调整一直是一个具有挑战性的问题。传统的参数调整方法,如试凑法和经验公式法,效率低下且难以保证控制系统的最佳性能。本文探讨了基于V-Tiger平台,利用被控对象的输入、输出阶跃响应,自动调整PID控制器增益,以优化建立时间、过冲和稳定性裕度的方法。该方法旨在克服传统参数调整方法的不足,提高控制系统的性能和效率。
关键词: PID控制器,参数调整,阶跃响应,V-Tiger,建立时间,过冲,稳定性裕度
1. 引言
在现代工业控制系统中,精确且高效的控制至关重要。PID控制器作为最常用的控制器之一,广泛应用于温度控制、流量控制、压力控制等领域。PID控制器通过比例、积分和微分三个环节的组合,能够有效地调节被控对象的输出,使其跟踪期望的设定值。然而,PID控制器的性能高度依赖于其三个参数的合理配置,即比例增益(Kp)、积分时间(Ti)和微分时间(Td)。
传统的PID参数调整方法主要包括试凑法、经验公式法和基于模型的控制方法。试凑法依赖于控制工程师的经验和直觉,效率低下且难以找到最优参数。经验公式法,如Ziegler-Nichols方法,虽然简单易用,但其适用范围有限,且容易产生过大的过冲。基于模型的控制方法,如内模控制(IMC),需要建立被控对象的精确数学模型,这在实际应用中往往难以实现。
近年来,基于智能算法的PID参数调整方法逐渐兴起,例如遗传算法、粒子群算法和神经网络等。这些方法能够有效地搜索最优参数,但计算复杂度较高,且对算法的参数设置较为敏感。
V-Tiger是一个功能强大的实时仿真平台,能够对复杂的控制系统进行建模、仿真和分析。利用V-Tiger平台的优势,本文提出了一种基于被控对象输入、输出阶跃响应,自动调整PID控制器增益的方法,旨在优化建立时间、过冲和稳定性裕度。该方法无需建立被控对象的精确数学模型,且计算复杂度较低,具有较强的实用性。
2. 基于阶跃响应的PID参数调整方法
本文提出的PID参数调整方法基于被控对象的阶跃响应,通过分析阶跃响应的特征参数,如延迟时间(L)、上升时间(Tr)、超调量(Mp)和稳态误差(Ess),来设计PID控制器的参数。
2.1 阶跃响应特征参数提取
对被控对象施加一个阶跃输入信号,记录其输出响应。通过对输出响应进行分析,可以提取以下特征参数:
- 延迟时间(L):
指阶跃输入施加后,输出响应达到最终值10%所需的时间。
- 上升时间(Tr):
指输出响应从最终值的10%上升到90%所需的时间。
- 超调量(Mp):
指输出响应的最大值超出稳态值的百分比。
- 稳态误差(Ess):
指输出响应在稳态时与设定值之间的偏差。
2.2 PID参数设计准则
基于阶跃响应的特征参数,可以根据以下准则设计PID控制器的参数:
- 比例增益(Kp):
Kp主要影响系统的响应速度和稳态误差。增大Kp可以加快响应速度,但同时也会增大超调量和稳定性风险。
- 积分时间(Ti):
Ti主要用于消除稳态误差。减小Ti可以加快消除稳态误差的速度,但同时也会增大超调量和振荡。
- 微分时间(Td):
Td主要用于抑制超调量和振荡,提高系统的稳定性。增大Td可以减小超调量,但同时也会降低系统的响应速度。
本文采用一种改进的Ziegler-Nichols方法,并结合阶跃响应的特征参数,进行PID参数的初步设计:
Kp = 0.6 * Ku
Ti = 0.5 * Tu
Td = 0.125 * Tu
其中,Ku是临界增益,Tu是临界振荡周期。为了获得更好的性能,本文将在此基础上,利用V-Tiger平台进行参数的微调和优化。
2.3 基于V-Tiger的参数优化
V-Tiger平台提供了一个强大的仿真环境,可以方便地对控制系统进行建模、仿真和分析。本文利用V-Tiger平台的优化工具箱,对初步设计的PID参数进行优化,以满足控制系统的性能指标要求。
具体的优化过程如下:
- 建立控制系统模型:
在V-Tiger平台中建立包含被控对象和PID控制器的闭环控制系统模型。
- 定义性能指标:
根据实际需求,定义控制系统的性能指标,例如建立时间、过冲和稳定性裕度。这些性能指标将被用作优化算法的约束条件和目标函数。例如,可以设定建立时间小于某个阈值,过冲小于某个百分比,以及相位裕度大于某个角度。
- 选择优化算法:
V-Tiger平台提供了多种优化算法,例如遗传算法、粒子群算法和梯度下降法等。根据实际问题的特点,选择合适的优化算法。
- 运行优化算法:
在V-Tiger平台中运行选择的优化算法,算法将自动调整PID控制器的参数,并对控制系统进行仿真,计算性能指标。
- 评估优化结果:
评估优化算法的结果,如果满足性能指标要求,则输出优化后的PID参数。否则,调整优化算法的参数,重新运行优化算法。
通过迭代优化过程,可以找到一组能够满足性能指标要求的PID参数,从而实现对建立时间、过冲和稳定性裕度的优化。
3. 仿真结果与分析
为了验证本文提出的方法的有效性,进行了一系列的仿真实验。选取一个二阶传递函数作为被控对象,其传递函数如下:
G(s) = 1 / (s^2 + 2s + 1)
首先,对该被控对象施加一个阶跃输入信号,并记录其输出响应。然后,根据阶跃响应的特征参数,按照2.2节所述的准则,初步设计PID控制器的参数。最后,利用V-Tiger平台,对初步设计的PID参数进行优化,以满足以下性能指标要求:
-
建立时间 < 2s
-
过冲 < 5%
-
相位裕度 > 45°
仿真结果表明,优化后的PID控制器能够有效地控制被控对象的输出,使其快速、平稳地跟踪设定值。与未优化的PID控制器相比,优化后的PID控制器具有更小的建立时间、更小的过冲和更大的相位裕度。
4. 结论与展望
本文提出了一种基于V-Tiger平台的PID参数自动调整方法,该方法利用被控对象的输入、输出阶跃响应,提取特征参数,并结合优化算法,自动调整PID控制器增益,以优化建立时间、过冲和稳定性裕度。仿真结果表明,该方法能够有效地提高控制系统的性能。
未来的研究方向包括:
-
将该方法应用于更复杂的控制系统,例如多变量控制系统和非线性控制系统。
-
研究更有效的优化算法,以提高参数调整的效率和精度。
-
将该方法应用于实际的工业控制系统中,验证其可行性和有效性。
-
开发一种自适应的PID参数调整方法,能够根据被控对象的特性变化,实时调整PID参数,从而保证控制系统的最佳性能。
⛳️ 运行结果
🔗 参考文献
[1] 肖启明,杨明,刘可述,等.PMSM伺服系统速度环PI控制器参数自整定及优化[J].电机与控制学报, 2014, 18(2):6.DOI:10.3969/j.issn.1007-449X.2014.02.016.
[2] 刘思华,王英.基于相角裕度优化的PID参数整定方法研究[J].化工自动化及仪表, 2008, 35(1):4.DOI:10.3969/j.issn.1000-3932.2008.01.004.
[3] 张连超,范世珣,范大鹏,等.动力调谐陀螺再平衡回路数字化的研究与实现[C]//中德双边高级专家x.2007.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇