【混合时变参数系统参数估计算法】使用范数总和正则化和期望最大化的混合时变参数系统参数估计算法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时变参数系统(Time-Varying Parameter Systems, TVPs)在经济、工程和生物医学等领域广泛存在。与静态系统不同,TVPs的参数随时间推移而变化,这使其建模和参数估计具有显著的挑战性。准确地估计TVPs的参数变化轨迹,对于系统的预测、控制和诊断至关重要。本文将探讨一种基于范数总和正则化(Sum of Norms Regularization, SONR)和期望最大化(Expectation-Maximization, EM)算法的混合时变参数系统参数估计算法,并分析其优势、适用场景及潜在改进方向。

时变参数系统建模的必要性与挑战

传统的系统建模方法通常假设系统参数是静态的,即不随时间变化。然而,现实世界中的许多系统并非如此。例如,宏观经济模型中的消费倾向、投资乘数等参数会受到政策、技术进步和社会环境的影响而发生改变;在控制系统中,被控对象的动态特性可能因磨损、老化或外部干扰而变化;在生物医学信号处理中,生理参数如心率变异性会因个体健康状况、压力水平或药物反应而波动。

忽视参数的时变特性会导致模型精度下降,甚至造成错误的预测和决策。因此,TVPs建模成为了近年来研究的热点。TVPs建模的关键在于如何有效地追踪参数随时间的演变。常用的方法包括递归最小二乘法(Recursive Least Squares, RLS)、卡尔曼滤波(Kalman Filter)和基于状态空间模型的参数估计方法。然而,这些方法往往对噪声敏感,并且需要预先知道参数变化的模式或假设。

范数总和正则化(SONR)

为了克服传统方法的局限性,研究者引入了正则化方法来提高参数估计的鲁棒性和稀疏性。范数总和正则化是一种常用的正则化方法,它可以有效地诱导参数变化轨迹的稀疏性,从而简化模型并提高估计的准确性。SONR通过在目标函数中添加一个惩罚项来实现,该惩罚项是参数变化量范数的总和。其基本思想是,假设参数变化是缓慢且稀疏的,即大部分时间参数保持稳定,只有少数时间发生显著变化。

SONR的优势在于它不需要预先知道参数变化的模式,并且对噪声具有较强的鲁棒性。然而,直接求解SONR优化问题通常比较困难,需要借助专门的优化算法。

期望最大化(EM)算法

期望最大化算法是一种迭代算法,用于在存在隐变量的情况下,估计模型参数的最大似然估计。EM算法包含两个步骤:期望步骤(E-step)和最大化步骤(M-step)。

  • E-step:

     计算隐变量的条件期望,即在给定当前参数估计值和观测数据的情况下,计算隐变量的后验概率分布。

  • M-step:

     利用E-step的结果,最大化期望的对数似然函数,从而更新参数估计值。

EM算法的优势在于它可以处理复杂的模型,并且保证收敛到局部最优解。然而,EM算法的收敛速度可能较慢,并且对初始值的选择比较敏感。

基于SONR和EM的混合时变参数系统参数估计算法

将SONR与EM算法相结合,可以有效地估计TVPs的参数变化轨迹。该混合算法的基本思想是:

  1. 将TVPs建模为状态空间模型:

     将参数变化建模为一个随机过程,例如一阶随机游走过程或自回归过程。

  2. 利用SONR对参数变化进行正则化:

     在状态空间模型的参数估计中,引入SONR惩罚项,以鼓励参数变化的稀疏性或平滑性。

  3. 采用EM算法进行参数估计:

     将参数变化视为隐变量,利用EM算法迭代地估计模型参数和参数变化轨迹。

具体算法步骤如下:

  1. 初始化:

     选择合适的模型参数初始值,例如使用静态参数估计方法得到初始值。

  2. E-step:

     利用卡尔曼滤波或粒子滤波等方法,计算在给定当前参数估计值和观测数据的情况下,参数变化轨迹的后验概率分布。该步骤需要求解一个带有SONR惩罚项的优化问题。可以使用ADMM(Alternating Direction Method of Multipliers)等算法来高效地求解该优化问题。

  3. M-step:

     利用E-step的结果,最大化期望的对数似然函数,从而更新模型参数估计值。该步骤通常可以转化为一个简单的线性回归问题。

  4. 迭代:

     重复E-step和M-step,直到参数估计值收敛。

算法的优势与适用场景

该混合算法具有以下优势:

  • 不需要预先知道参数变化的模式:

     SONR能够自适应地学习参数变化轨迹的稀疏性和平滑性,无需人为设定参数变化的函数形式。

  • 对噪声具有较强的鲁棒性:

     SONR能够抑制噪声对参数估计的影响,提高估计的准确性。

  • 可以处理复杂的TVPs模型:

     EM算法可以处理状态空间模型等复杂的TVPs模型。

该混合算法适用于以下场景:

  • 参数变化缓慢且稀疏的TVPs:

     例如,经济模型中受到突发事件影响的参数,控制系统中发生故障的传感器参数。

  • 需要对参数变化轨迹进行平滑估计的TVPs:

     例如,生物医学信号处理中,受到生理噪声干扰的参数。

  • 难以建立精确状态空间模型的TVPs:

     EM算法可以处理具有一定模型不确定性的TVPs。

算法的潜在改进方向

该混合算法仍有改进的空间:

  • 正则化参数的选择:

     正则化参数λ的选择对参数估计的结果具有重要影响。可以使用交叉验证等方法来选择合适的正则化参数。

  • EM算法的加速:

     EM算法的收敛速度可能较慢。可以使用加速EM算法,例如共轭梯度EM算法,来提高收敛速度。

  • 对异常值的处理:

     该算法可能对异常值敏感。可以引入鲁棒的参数估计方法,例如Huber损失函数,来提高对异常值的抵抗能力。

  • 与深度学习方法的结合:

     可以利用深度学习方法来学习参数变化的复杂模式,例如使用循环神经网络(RNN)来建模参数变化的时序依赖关系。

结论

基于范数总和正则化和期望最大化的混合时变参数系统参数估计算法是一种有效的TVPs参数估计方法。该算法结合了SONR的稀疏性和鲁棒性以及EM算法处理复杂模型的能力,具有广泛的应用前景。未来的研究可以集中在正则化参数的选择、EM算法的加速、对异常值的处理以及与深度学习方法的结合等方面,以进一步提高该算法的性能和适用性。通过不断改进,该混合算法有望为TVPs建模和参数估计提供更加强大的工具,从而更好地理解和控制复杂动态系统。

⛳️ 运行结果

🔗 参考文献

[1] 段彦亮.稳健自适应波束形成算法研究[D].桂林电子科技大学,2023.

[2] 王炳辉.基于层次贝叶斯自适应稀疏的高斯混合模型[D].大连理工大学,2015.

[3] 王炳辉.基于层次贝叶斯自适应稀疏的高斯混合模型[D].大连理工大学[2025-04-15].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值