✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
能源需求的日益增长以及环境保护意识的不断提升,使得传统电力系统的经济调度问题面临着全新的挑战。如何在满足电力需求的同时,最大限度地降低发电成本并减少环境污染,成为了电力系统优化调度的关键目标。环境经济调度(Environmental Economic Dispatch,EED)应运而生,旨在寻求经济性和环境效益之间的平衡。传统的优化方法在处理EED问题时往往存在局限性,而人工神经网络(Artificial Neural Network,ANN)作为一种强大的非线性建模工具,在预测和优化方面展现出巨大潜力。然而,ANN的学习效果和泛化能力很大程度上取决于其结构参数的优化。因此,本文探讨了利用多目标宇宙优化算法(Multi-Objective Universe Optimization Algorithm,MOUOA)优化ANN结构参数,以实现更优的环境经济调度方案。
一、环境经济调度及其重要性
环境经济调度是一个复杂的优化问题,其核心目标是在满足电力系统运行约束的前提下,同时最小化燃料成本和污染物排放。传统的经济调度主要关注燃料成本的降低,而EED则将环境因素纳入考量,通过优化机组的发电功率分配,减少有害气体的排放,如二氧化硫(SO2)和氮氧化物(NOx)。EED的重要性体现在以下几个方面:
- 可持续发展:
通过减少污染物排放,EED有助于改善空气质量,保护生态环境,为实现可持续发展做出贡献。
- 能源效率:
EED优化燃料使用效率,减少能源浪费,降低发电成本,提高电力系统的经济效益。
- 法规遵从:
随着环保法规的日益严格,电力公司需要通过EED来满足排放标准,避免不必要的罚款和处罚。
- 社会责任:
电力公司作为重要的能源供应商,承担着保护环境、造福社会的责任,EED是履行社会责任的重要体现。
二、人工神经网络在环境经济调度中的应用
人工神经网络是一种模仿生物神经系统结构和功能的计算模型,具有强大的非线性映射能力和自学习能力。在EED领域,ANN可以用于:
- 预测机组发电成本和排放量:
ANN可以根据机组的历史运行数据,学习并建立发电成本和排放量与发电功率之间的非线性关系模型,为调度决策提供准确的预测信息。
- 优化机组发电功率分配:
ANN可以作为优化算法的一部分,通过学习历史调度方案,不断改进机组发电功率分配策略,以达到降低成本和减少排放的目的。
- 构建智能调度系统:
ANN可以与其他技术相结合,构建智能调度系统,实现对电力系统的实时监控和优化调度。
然而,ANN的性能很大程度上取决于其结构参数的优化,例如隐含层数、神经元个数、激活函数等。如果这些参数选择不当,可能会导致ANN出现过拟合或欠拟合现象,影响其预测精度和泛化能力。因此,需要采用合适的优化算法来寻找最优的ANN结构参数。
三、多目标宇宙优化算法及其优势
宇宙优化算法(Universe Optimization Algorithm,UOA)是一种新兴的元启发式优化算法,其灵感来源于宇宙膨胀理论。UOA具有结构简单、参数少、全局搜索能力强等优点,近年来在多个领域得到了广泛应用。然而,传统的UOA主要用于解决单目标优化问题,无法直接应用于EED这种多目标优化问题。
多目标宇宙优化算法(MOUOA)是对UOA的扩展和改进,旨在解决多目标优化问题。MOUOA通过引入Pareto支配关系和外部存档机制,能够在搜索过程中保持多个非支配解,并最终找到一组代表最优解集的Pareto前沿。MOUOA相对于传统的优化算法,具有以下优势:
- 更强的全局搜索能力:
MOUOA具有更强的全局搜索能力,能够有效地避免陷入局部最优解,从而找到更优的解集。
- 更好的处理多目标问题的能力:
MOUOA能够同时优化多个目标函数,并找到一组平衡不同目标的Pareto最优解集。
- 更高的效率:
MOUOA的结构简单,参数少,计算效率高,能够快速找到最优解集。
四、基于MOUOA优化ANN结构参数的EED方法
将MOUOA应用于ANN结构参数的优化,可以有效地提高ANN的预测精度和泛化能力,从而改善EED的优化效果。具体步骤如下:
- 建立EED数学模型:
构建包含目标函数(燃料成本和污染物排放)和约束条件(电力平衡、机组容量、传输约束等)的EED数学模型。
- 构建ANN模型:
选择合适的ANN结构,确定输入输出变量,并初始化ANN的权重和阈值。ANN的输入变量可以是机组的发电功率、系统负荷等,输出变量可以是机组的发电成本和排放量。
- 利用MOUOA优化ANN结构参数:
将ANN的结构参数(例如隐含层数、神经元个数、激活函数等)作为MOUOA的决策变量,将ANN的预测误差(例如均方误差)作为MOUOA的目标函数。MOUOA通过不断迭代,寻找最优的ANN结构参数,使得ANN的预测误差最小。
- 利用优化后的ANN进行EED:
将优化后的ANN模型嵌入到EED优化过程中,利用ANN预测机组的发电成本和排放量,并利用优化算法(例如遗传算法、粒子群算法等)进行机组发电功率分配,从而得到最优的EED方案。
五、研究展望与挑战
将MOUOA应用于优化ANN结构参数的EED方法具有广阔的应用前景。然而,也存在一些需要进一步研究和解决的挑战:
- MOUOA的参数调整:
MOUOA的性能受到其自身参数的影响,例如宇宙膨胀速率、吸引力系数等。需要进一步研究如何自适应地调整这些参数,以提高MOUOA的优化效率。
- ANN结构的选择:
如何选择合适的ANN结构,例如选择哪种激活函数、采用多少个隐含层,仍然是一个具有挑战性的问题。需要结合具体的EED问题,选择最适合的ANN结构。
- 与其他技术的融合:
可以将MOUOA与其他优化算法(例如遗传算法、粒子群算法等)相结合,构建混合优化算法,以进一步提高EED的优化效果。
- 实际电力系统应用:
需要将基于MOUOA优化ANN结构参数的EED方法应用于实际电力系统中,验证其有效性和可靠性,并针对实际电力系统的特点进行改进和优化。
结论
环境经济调度是电力系统优化调度的重要方向,旨在实现经济性和环境效益之间的平衡。人工神经网络在EED领域具有广泛的应用前景,但其性能很大程度上取决于结构参数的优化。多目标宇宙优化算法作为一种新兴的元启发式优化算法,具有更强的全局搜索能力和更好的处理多目标问题的能力。将MOUOA应用于优化ANN结构参数的EED方法,能够有效地提高ANN的预测精度和泛化能力,从而改善EED的优化效果。尽管还存在一些需要进一步研究和解决的挑战,但相信随着技术的不断发展,基于MOUOA优化ANN结构参数的EED方法将在电力系统优化调度中发挥越来越重要的作用,为构建更清洁、更高效、更可持续的能源系统做出贡献。
⛳️ 运行结果
🔗 参考文献
[1] 鲁燕.不确定条件下Flow Shop调度问题研究[D].山东大学,2010.DOI:10.7666/d.y1793215.
[2] 陈石毓.基于深度学习的新型相变储能系统负荷预测与优化调度[D].北京建筑大学,2023.
[3] 包曼.含大规模风电接入的电力系统经济调度研究[D].内蒙古农业大学,2021.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇