【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

图像,作为信息传递的重要载体,蕴含着丰富而复杂的内容。如何高效地从图像中提取有用的信息,是计算机视觉领域研究的核心问题之一。图像分割、检测、特征提取以及特征的测量与过滤,构成了一套完整的流程,旨在将图像分解为具有语义意义的区域,并从中提取关键特征,最终实现对图像内容的理解和分析。本文将深入探讨这几个环节,阐述其原理、方法和应用,并着重强调它们在构建图像理解桥梁中的重要作用。

图像分割是整个流程的基石。它指的是将图像分割成多个互不重叠的区域,使得每个区域内的像素具有相似的特征,例如颜色、纹理、亮度等。分割的目的是将图像分解为更小的、更易于分析的单元,从而为后续的检测、特征提取等步骤奠定基础。根据采用的方法不同,图像分割可以分为多种类型,例如基于阈值的分割、基于边缘的分割、基于区域的分割和基于聚类的分割等。基于阈值的分割简单易行,通过设置合适的阈值将像素划分为不同的类别。然而,它对图像的噪声和光照变化敏感,难以处理复杂场景。基于边缘的分割通过检测图像中的边缘来划分区域,常用的边缘检测算子包括Sobel、Canny等。这种方法对边缘清晰的图像效果较好,但容易受到噪声的干扰,导致边缘断裂或错误连接。基于区域的分割则通过逐步合并或分裂像素或区域来完成分割,例如区域生长法和分裂合并法。这种方法对噪声具有一定的鲁棒性,但计算复杂度较高。基于聚类的分割则将像素视为数据点,通过聚类算法将具有相似特征的像素聚合成不同的区域,例如K-means聚类和模糊C均值聚类。这种方法适用于处理具有多种特征的图像,但需要事先确定聚类的数量。图像分割算法的选择取决于具体的应用场景和图像的特点,需要根据实际情况进行权衡和选择。

在图像分割的基础上,图像检测的目标是从图像中识别并定位特定的目标对象。与图像分割不同,图像检测更加关注特定目标的识别,例如人脸检测、车辆检测、物体检测等。图像检测方法通常分为两大类:传统方法和基于深度学习的方法。传统方法通常包括特征提取和分类器训练两个步骤。首先,利用手工设计的特征提取算子(例如HOG、SIFT、Haar等)提取图像中可能包含目标对象的候选区域的特征。然后,使用分类器(例如SVM、AdaBoost等)对这些特征进行分类,判断其是否为目标对象。传统方法在一定程度上能够解决一些简单的检测任务,但其性能往往受到手工设计特征的限制,难以处理复杂场景和多变的目标对象。近年来,基于深度学习的目标检测方法取得了显著的进展。例如,R-CNN系列算法(R-CNN、Fast R-CNN、Faster R-CNN)通过卷积神经网络(CNN)提取图像特征,并结合区域提议网络(RPN)生成候选区域,最后使用分类器和回归器进行目标识别和定位。YOLO系列算法(YOLO、YOLOv2、YOLOv3、YOLOv4、YOLOv5)则采用单阶段检测方法,直接在图像上进行目标识别和定位,具有更高的检测速度。SSD算法结合了多尺度特征图和先验框,能够更好地处理不同尺度的目标对象。基于深度学习的目标检测方法具有更强的特征提取能力和更高的检测精度,在各种复杂场景下都表现出了优异的性能。

完成图像分割和检测后,下一步是从分割后的区域或检测到的目标对象中提取有用的特征。图像特征是描述图像内容的关键信息,可以用于后续的分析、识别和分类。图像特征可以分为多种类型,例如颜色特征、纹理特征、形状特征和空间关系特征等。颜色特征通过描述图像的颜色分布来表征图像的内容,常用的颜色特征包括颜色直方图、颜色矩和颜色共生矩阵等。纹理特征描述了图像的表面特性,例如粗糙度、方向性和对比度等,常用的纹理特征包括灰度共生矩阵(GLCM)、局部二值模式(LBP)和Gabor滤波器等。形状特征描述了图像的几何形状,例如面积、周长、长宽比、圆形度等,常用的形状特征包括Hu不变矩、傅里叶描述子和链码等。空间关系特征描述了图像中不同区域之间的相对位置关系,例如距离、角度和拓扑关系等。不同的应用场景需要选择不同的特征类型,并根据实际情况进行优化和改进。

在提取图像特征之后,需要对这些特征进行测量和过滤,以去除冗余的、不相关的或噪声较大的特征,从而提高后续分析的准确性和效率。特征测量是指计算特征的数值,例如面积、周长、平均灰度值、标准差等。特征过滤是指根据一定的标准对特征进行筛选,例如设置阈值、使用统计方法或机器学习算法等。常用的特征过滤方法包括:

  • 基于阈值的过滤: 根据特征的数值大小设置阈值,将低于或高于阈值的特征剔除。例如,可以设置面积阈值来去除面积过小或过大的区域,或者设置灰度值阈值来去除亮度过高或过暗的区域。

  • 基于统计方法的过滤: 使用统计方法分析特征的分布,将偏离平均值过远的特征视为异常值并剔除。例如,可以使用标准差或四分位距来判断特征是否为异常值。

  • 基于机器学习算法的过滤: 使用机器学习算法训练一个特征选择模型,根据特征对目标分类或回归的贡献程度来选择重要的特征。常用的特征选择算法包括基于Filter的方法(例如卡方检验、互信息)、基于Wrapper的方法(例如递归特征消除)和基于Embedded的方法(例如L1正则化)。

特征的测量和过滤是特征提取流程中不可或缺的一环,它可以有效地提高图像分析的准确性和效率。

综上所述,图像分割、检测、特征提取、特征测量和过滤构成了一套完整的图像分析流程。图像分割将图像分解为具有语义意义的区域,图像检测识别并定位特定的目标对象,特征提取从分割后的区域或检测到的目标对象中提取有用的特征,特征测量和过滤则对特征进行筛选,去除冗余和噪声。这几个环节紧密联系,相互依赖,共同构建了理解图像的桥梁。随着计算机视觉技术的不断发展,这套流程的应用越来越广泛,例如在医学影像分析中,可以用于肿瘤检测和病灶分割;在智能交通系统中,可以用于车辆检测和交通流量分析;在工业自动化领域,可以用于产品缺陷检测和质量控制。未来,随着深度学习技术的进一步发展和计算能力的不断提升,这套流程的性能将得到进一步的提升,从而为各行各业带来更多的创新和应用。我们有理由相信,图像分割、检测、特征提取与测量过滤将在构建图像理解桥梁中发挥越来越重要的作用。

⛳️ 运行结果

🔗 参考文献

[1] 孙银银.基于图像技术的纱线毛羽检测与分析[D].江南大学,2017.

[2] 王玲.基于Matlab的图像分割和边缘检测教学的研究[J].电脑知识与技术, 2015(3X):3.DOI:CNKI:SUN:DNZS.0.2015-08-077.

[3] 土木水利.基于图像处理的桥梁沥青路面裂缝识别及检测系统开发[D]. 2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值