【修正-高斯拉普拉斯滤波器-用于平滑和去噪】基于修正高斯滤波拉普拉斯地震到达时间自动检测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

地震学研究中,精确的地震到达时间拾取是地震定位、震源机制研究以及地球内部结构成像的关键环节。然而,真实地震信号往往受到背景噪声、仪器响应、传播路径影响等因素的干扰,导致传统的到达时间拾取方法难以获得精确的结果。人工拾取耗时费力,且主观性强。因此,发展高效、鲁棒性强的自动地震到达时间检测方法具有重要的科学意义和应用价值。

近年来,各种自动检测算法被广泛应用于地震信号处理,例如基于短时平均/长时平均(STA/LTA)比值法、互相关法、小波变换法等。然而,这些方法在复杂噪声环境下往往表现不佳。高斯滤波拉普拉斯算子(LoG)算子作为一种边缘检测算子,具有良好的空间频率选择性,能够在有效平滑噪声的同时增强信号的边缘特征,已被应用于地震信号处理领域。但是,标准LoG算子对高频噪声敏感,在实际地震数据处理中可能产生虚假峰值,影响到达时间的精度。因此,本文旨在研究一种基于修正高斯滤波拉普拉斯算子的地震到达时间自动检测方法,通过改进滤波策略,提高算法的抗噪性能和到达时间拾取的准确性。

修正高斯滤波拉普拉斯算子的设计

标准LoG算子是高斯滤波和拉普拉斯算子的串联,其数学表达式为:

LoG(x,y) = ∇²G(x,y) = (x²/σ² + y²/σ² - 2) * (1/(2πσ⁴)) * exp(-(x²+y²)/(2σ²))

其中,∇² 代表拉普拉斯算子,G(x,y)代表高斯函数,σ 代表高斯函数的标准差,控制着滤波器的平滑程度。

标准LoG算子虽然能够有效地检测信号的边缘特征,但在复杂噪声环境下,由于高频噪声的影响,会产生大量的虚假峰值。为了提高抗噪性能,本文提出一种修正的高斯滤波策略,具体表现为以下两个方面:

  1. 自适应调整高斯滤波尺度: 地震信号的信噪比随时间变化,固定的高斯滤波尺度难以适应不同噪声水平的信号。因此,我们引入自适应调整策略,根据信号的局部能量变化动态调整高斯滤波的尺度σ。具体而言,我们首先计算地震信号的短时能量,然后根据短时能量的大小来调整σ的值。在信号能量较高,信噪比较高的区域,采用较小的σ值,保留更多的信号细节;在信号能量较低,信噪比较低的区域,采用较大的σ值,进行更强的平滑,抑制噪声。

  2. 多尺度高斯滤波融合: 单一尺度的高斯滤波难以同时兼顾噪声抑制和细节保留。因此,我们采用多尺度高斯滤波融合的策略,将不同尺度的高斯滤波结果进行加权平均,得到最终的高斯滤波结果。具体来说,我们选择多个不同的σ值,分别对地震信号进行高斯滤波,然后根据每个尺度滤波结果的信噪比进行加权,得到融合后的结果。信噪比较高的滤波结果赋予较大的权重,信噪比较低的滤波结果赋予较小的权重。

通过以上两种修正策略,可以有效地提高高斯滤波的抗噪性能和信号细节保留能力,从而提高LoG算子的检测精度。

基于修正LoG算子的地震到达时间自动检测方法

在得到修正后的LoG算子后,我们可以将其应用于地震到达时间自动检测。具体的步骤如下:

  1. 预处理: 对原始地震信号进行去趋势、去均值等预处理操作,消除低频噪声和直流分量的影响。

  2. 修正高斯滤波: 利用上述自适应调整和多尺度融合的策略,对地震信号进行高斯滤波。

  3. 拉普拉斯变换: 对高斯滤波后的信号进行拉普拉斯变换,得到LoG滤波后的结果。

  4. 峰值检测: 对LoG滤波后的结果进行峰值检测。LoG滤波后的信号在地震波到达时刻会出现明显的峰值。

  5. 阈值筛选: 设置一个合适的阈值,去除幅度较小的虚假峰值。

  6. 精确定位: 对经过阈值筛选后的峰值进行精确定位。可以采用抛物线拟合等方法,提高到达时间的精度。

实验结果与分析

为了验证本文提出的修正LoG算子自动检测方法的有效性,我们采用了大量的实际地震数据进行实验。实验结果表明,与传统的STA/LTA方法和标准的LoG算子相比,该方法具有以下优势:

  • 更高的检测精度:

     修正LoG算子能够更准确地检测到地震波的到达时刻,降低了漏检率和误检率。

  • 更强的抗噪性能:

     修正LoG算子能够有效地抑制噪声的干扰,在复杂噪声环境下仍然能够稳定地工作。

  • 更好的适应性:

     自适应调整和多尺度融合策略使得该方法能够适应不同类型的地震信号和不同的噪声水平。

例如,我们对一组信噪比低的实际地震数据进行了测试。结果显示,STA/LTA方法由于受到噪声的严重干扰,难以准确地检测到地震波的到达时刻。标准LoG算子虽然能够检测到一些峰值,但存在大量的虚假峰值,导致误检率较高。而修正LoG算子能够有效地抑制噪声的干扰,清晰地检测到地震波的到达时刻,并降低了误检率。

结论与展望

本文提出了一种基于修正高斯滤波拉普拉斯算子的地震到达时间自动检测方法。通过引入自适应调整和多尺度融合的高斯滤波策略,有效地提高了算法的抗噪性能和检测精度。实验结果表明,该方法能够准确、稳定地检测到地震波的到达时刻,在复杂噪声环境下表现出良好的性能。

未来的研究方向可以从以下几个方面展开:

  • 更智能的参数优化:

     目前算法的参数主要依靠经验设置,未来可以考虑采用机器学习等方法,实现参数的自动优化。

  • 多震相联合检测:

     地震信号包含多个震相,例如P波、S波等。未来可以考虑将多震相信息融合到算法中,提高检测的鲁棒性。

  • 实时检测与预警:

     将该方法应用于地震监测台网,实现地震到达时间的实时检测和预警。

⛳️ 运行结果

🔗 参考文献

[1] 葛哲学.滤波方法及其在非线性系统故障诊断中的应用研究[D].国防科学技术大学,2006.DOI:10.7666/d.y1101763.

[2] 葛哲学.滤波方法及其在非线性系统故障诊断中的应用研究[D].国防科学技术大学[2025-04-17].DOI:CNKI:CDMD:1.2007.141073.

[3] 涂刚毅,金世俊,祝雪芬,等.基于改进粒子滤波算法的GPS非高斯伪距误差修正[J].电子测量与仪器学报, 2009(6):5.DOI:CNKI:SUN:DZIY.0.2009-06-007.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值