【路由协议】使用按需路由协议和数据包注入的即时网络模拟传递率(PDR)、总消耗能量和节点消耗能量以及延迟研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

 随着无线传感器网络、移动自组网等即时网络应用的不断扩展,其动态性、资源受限性等特点对路由协议的设计提出了严峻挑战。传统的基于周期性控制消息交换的表驱动路由协议往往在高动态环境下效率低下,并消耗大量能源。按需路由协议因其按需发现路径的机制,在一定程度上能够缓解这些问题。本文通过构建即时网络仿真环境,并结合数据包注入技术,深入研究了采用不同按需路由协议的网络性能。具体而言,我们重点评估了网络在不同负载下的数据包传递率(PDR)、总消耗能量、节点消耗能量以及数据包平均端到端延迟。通过对比分析,旨在揭示不同按需路由协议在资源受限、高动态即时网络环境下的适用性与性能优劣,为即时网络的应用部署和优化提供理论依据。

关键词: 即时网络;按需路由;数据包注入;传递率(PDR);能耗;延迟;网络模拟

1. 引言

即时网络(Instant Networks)是一种具有动态拓扑、自组织、无中心控制的分布式网络。典型的即时网络包括移动自组网(Mobile Ad Hoc Networks, MANETs)、无线传感器网络(Wireless Sensor Networks, WSNs)以及车辆自组网(Vehicular Ad Hoc Networks, VANETs)等。这些网络通常部署在缺乏基础设施或基础设施不可靠的环境中,其节点通常具备有限的计算能力、存储空间和能量储备。网络的动态性主要体现在节点的高速移动、节点的加入和离开、以及无线链路的失效等,这使得网络拓扑结构频繁变化。在这样的环境下,如何高效、可靠地传输数据成为核心问题。

路由协议是解决数据传输问题的关键。根据路径发现机制的不同,路由协议可大致分为表驱动路由协议、按需路由协议和混合路由协议。表驱动路由协议(如DSDV)通过周期性交换路由信息维护完整的路由表,其优点是源节点可以立即发送数据,无需进行路径发现。然而,在高动态环境下,频繁的路由信息交换会消耗大量带宽和能量,且路由表更新滞后可能导致使用失效路径。

按需路由协议(On-Demand Routing Protocols)则采用了不同的策略。它们只在源节点需要向目标节点发送数据时才启动路径发现过程。典型的按需路由协议包括Ad Hoc On-Demand Distance Vector (AODV)、Dynamic Source Routing (DSR) 和按需多路径距离向量路由协议 (AOMDV) 等。这种按需发现路径的机制减少了控制信息的开销,尤其适用于节点活动度较低或流量模式稀疏的网络。然而,路径发现过程会引入额外的延迟。

数据包注入(Packet Injection)是网络模拟研究中常用的技术,通过以可控的方式向网络中注入数据包,模拟不同负载下的网络流量,从而评估路由协议的性能。通过调整注入速率、数据包大小、流量模式(如 CBR、FTP 等),可以模拟真实的或极端的工作场景。

本文旨在利用网络模拟技术,结合数据包注入,深入研究不同的按需路由协议在即时网络环境下的性能。我们将重点关注以下几个关键性能指标:数据包传递率(PDR)、总消耗能量、节点消耗能量以及平均端到端延迟。通过对这些指标的定量分析,我们可以比较不同按需路由协议的优劣,为即时网络的应用选择和优化提供参考。

2. 即时网络模拟环境构建与方法

为了对按需路由协议的性能进行系统研究,我们构建了一个即时网络模拟环境。常用的网络模拟器包括 NS-2、NS-3、OMNeT++ 等。本文选用 NS-3 进行模拟,因为 NS-3 提供了丰富的网络模型和灵活的编程接口,能够较为真实地模拟无线通信环境、节点移动以及路由协议行为。

2.1 模拟环境参数设置

为了模拟具有代表性的即时网络场景,我们设置了以下关键参数:

  • 网络规模:

     设置一定数量的节点,例如 50 个或 100 个节点,分布在一定大小的区域内(例如 500m x 500m 或 1000m x 1000m)。

  • 节点移动模型:

     采用随机步行模型(Random Walk Mobility Model)或随机航路点模型(Random Waypoint Mobility Model),模拟节点的随机移动。通过设置最大移动速度和暂停时间,可以控制网络的动态性。

  • 无线信道模型:

     采用合适的无线信道模型,如 Friis 传播模型或 Two-Ray 地面反射模型,模拟无线信号的衰减。

  • MAC 协议:

     采用 IEEE 802.11b 或 802.11g 标准作为 MAC 协议,模拟无线局域网的接入控制机制。

  • 传输层协议:

     采用 UDP (User Datagram Protocol) 或 TCP (Transmission Control Protocol)。考虑到即时网络对实时性的要求以及路由协议的性能评估,本文主要采用 UDP 进行数据传输,以便更直观地反映路由协议在数据包丢失和延迟方面的性能。

  • 数据包注入:

     采用恒定比特率(Constant Bit Rate, CBR)流量源,模拟不同负载下的数据传输。通过设置 CBR 流量源的数量、数据包大小和发送间隔,控制网络的流量负载。

2.2 路由协议选择

本文重点研究按需路由协议,选择了三种典型的按需路由协议进行对比研究:

  • AODV (Ad Hoc On-Demand Distance Vector):

     一种基于距离向量的按需路由协议。它通过广播 RREQ (Route Request) 发现路径,并使用 RREP (Route Reply) 回应请求。维护活动的路由信息,使用序列号防止路由环路。

  • DSR (Dynamic Source Routing):

     一种基于源路由的按需路由协议。源节点在数据包头部携带完整的路径信息。它也使用 RREQ 和 RREP 进行路径发现。DSR 在路径断裂时使用路由维护机制,如路由错误包 (Route Error)。

  • AOMDV (Ad Hoc On-Demand Multipath Distance Vector):

     AODV 的多径扩展。它在路径发现过程中寻找多条到目标的无环路路径,并维护这些路径。当当前路径失效时,可以快速切换到备用路径,从而提高数据传递率和降低延迟。

2.3 数据包注入与负载控制

我们通过在模拟环境中创建多个 CBR 流量源,向网络中注入数据包。CBR 流量源的配置包括:

  • 源节点和目的节点对:

     随机选择网络中的节点作为流量源和目的节点,确保流量分布的随机性。

  • 数据包大小:

     例如 512 字节或 1024 字节。

  • 发送间隔:

     通过调整发送间隔,控制数据包的注入速率,从而模拟不同的网络负载。例如,减小发送间隔可以增加网络负载。

我们将在不同的数据包注入速率下进行模拟,以观察不同负载对路由协议性能的影响。

2.4 性能指标收集与分析

在模拟过程中,我们将收集以下关键性能指标:

  • 数据包传递率 (Packet Delivery Ratio, PDR):

     定义为成功接收到的数据包数量与源节点发送的数据包总数之比。PDR 是衡量路由协议可靠性的重要指标。高 PDR 表示数据包在传输过程中丢失率较低。

  • 总消耗能量 (Total Energy Consumption):

     定义为网络中所有节点在模拟过程中消耗的总能量。这包括节点发送、接收、空闲监听和睡眠等状态下的能量消耗。我们将在模拟器中启用能量模型,并记录每个节点的能量消耗,然后汇总得到总消耗能量。

  • 节点消耗能量 (Node Energy Consumption):

     分析单个节点的能量消耗分布。这有助于了解哪些节点在路由过程中承担了更多的能量负担,以及能量消耗的均衡性。

  • 平均端到端延迟 (Average End-to-End Delay):

     定义为数据包从源节点发送到目的节点成功接收到的平均时间。包括排队延迟、传输延迟、传播延迟以及路径发现延迟等。平均端到端延迟是衡量网络传输效率和实时性的重要指标。

我们将对在不同数据包注入速率下运行不同按需路由协议的模拟结果进行统计分析,并绘制相应的性能曲线图,以便进行直观的对比和分析。

3. 模拟结果与分析

请注意:以下部分为模拟结果的假设性描述和分析,真实的模拟结果会依赖于具体的模拟环境设置和参数。

3.1 数据包传递率 (PDR) 分析

图 1 描绘了在不同数据包注入速率下,不同按需路由协议的平均 PDR。

  • 低负载下:

     在较低的数据包注入速率下,网络中的竞争和拥塞较少,各按需路由协议的 PDR 都相对较高,且差异不显著。这是因为路径发现过程成功率高,且路径失效频率低。

  • 中高负载下:

     随着数据包注入速率的增加,网络负载逐渐升高,信道竞争加剧,数据包丢失率增加。此时,不同按需路由协议的 PDR 开始出现明显差异。

    • AOMDV

       通常能保持较高的 PDR。其多径特性使得当主路径失效时,可以快速切换到备用路径,从而减少数据包丢失。

    • AODV

       的 PDR 可能会随着负载增加而下降。当路径频繁断裂时,AODV 需要重新进行路径发现,这期间可能导致数据包丢失。

    • DSR

       的 PDR 在高负载下可能表现出一定的波动性。DSR 将路径信息包含在数据包头部,这会增加数据包的大小,在高负载下可能更容易导致数据包丢失。同时,DSR 的路由维护机制在高动态环境下可能效率不高。

总的来说,AOMDV 在高负载和动态环境下通常能提供更高的 PDR,体现了多径路由的优势。

3.2 总消耗能量分析

图 2 展示了在不同数据包注入速率下,不同按需路由协议的总消耗能量。

  • 低负载下:

     在较低的数据包注入速率下,网络流量较少,各按需路由协议的总能量消耗相对较低。主要能量消耗来自于节点空闲监听和偶尔的控制消息交换。

  • 中高负载下:

     随着数据包注入速率的增加,数据传输和控制消息交换的频率增加,总能量消耗显著增加。

    • DSR

       在一些情况下可能消耗更多的能量。DSR 的源路由机制使得数据包头部携带路径信息,增加了数据包大小,从而增加了发送能量消耗。同时,DSR 的路由维护机制在高动态环境下可能产生较多的控制消息。

    • AODV

       的能量消耗通常介于 DSR 和 AOMDV 之间。其能量消耗主要取决于路径发现和维护的频率。

    • AOMDV

       的能量消耗可能会比 AODV 略高。尽管 AOMDV 提供了多径,但在路径发现阶段需要探索多条路径,可能产生更多的控制消息。然而,由于其高 PDR,成功传输单位数据包的平均能量消耗可能更低。

需要注意的是,能量消耗与 PDR 之间存在权衡。一个协议可能消耗更多的能量,但换来了更高的 PDR。因此,仅凭总能量消耗不足以完全评估协议的性能。

3.3 节点消耗能量分析

图 3 描绘了在特定负载下,网络中部分节点的能量消耗分布。

分析节点能量消耗分布可以发现:

  • 路由转发节点:

     位于流量路径上的中间节点通常比源节点和目的节点消耗更多能量,因为它们需要进行路由转发。

  • 控制消息处理:

     处理路由控制消息(如 RREQ、RREP、Route Error 等)也会消耗能量。在按需路由协议中,参与路径发现和维护的节点会消耗更多能量。

  • AOMDV

     在某些情况下,由于多径的存在,可能会分散能量消耗到多条路径上的节点,从而使得单个节点的能量消耗相对更均衡。然而,如果某些节点频繁位于多条热门路径上,其能量消耗可能会很高。

  • DSR

     的源路由机制可能使得某些节点在处理包含长路径信息的数据包时消耗更多能量。

通过分析节点能量消耗分布,可以识别能量瓶颈节点,并为设计能量感知路由策略提供指导。

3.4 平均端到端延迟分析

图 4 展示了在不同数据包注入速率下,不同按需路由协议的平均端到端延迟。

  • 低负载下:

     在较低的数据包注入速率下,网络拥塞较轻,路径发现过程通常能快速完成。各按需路由协议的平均端到端延迟相对较低。

  • 中高负载下:

     随着数据包注入速率的增加,网络拥塞加剧,排队延迟增加。同时,路径断裂更频繁,需要进行更多的路径发现和维护,这也会增加延迟。

    • DSR

       的平均端到端延迟在某些情况下可能较高。源路由机制增加了数据包大小,导致传输延迟增加。同时,在高动态环境下,DSR 的路径维护机制可能导致路径失效后延迟增加。

    • AODV

       的平均端到端延迟通常比 DSR 低。AODV 维护活动的路由,一旦路径断裂,虽然需要重新发现,但其路由维护机制通常比 DSR 更快。

    • AOMDV

       的平均端到端延迟在某些情况下可能最低。多径特性使得当当前路径失效时,可以快速切换到备用路径,避免了完全重新发现路径的延迟。此外,多径还可以用于负载均衡,减轻拥塞,从而降低延迟。

总体而言,AOMDV 在高负载和动态环境下通常能提供较低的平均端到端延迟,突出了其多径容错和快速切换的优势。

4. 讨论与未来工作

基于上述模拟结果,我们可以得出以下结论:

  • 按需路由协议的适用性:

     按需路由协议在高动态、资源受限的即时网络环境中具有一定的优势,特别是在低负载或流量模式稀疏的情况下,可以有效减少控制消息开销。

  • 不同按需路由协议的性能权衡:
    • AODV

       是一种较为均衡的按需路由协议,在大多数情况下表现良好。

    • DSR

       的源路由机制在低动态环境下表现较好,但在高动态和高负载下可能面临性能下降和能量消耗增加的问题。

    • AOMDV

       的多径特性在高动态和高负载环境下表现出显著优势,能够提供更高的 PDR 和更低的延迟,尽管其能量消耗可能略有增加。

  • 负载对性能的影响:

     随着网络负载的增加,所有按需路由协议的性能都会受到影响,表现为 PDR 下降、能量消耗增加和延迟增加。然而,不同协议在面对负载增加时的鲁棒性不同。

未来的工作可以从以下几个方面展开:

  • 更多路由协议的对比研究:

     研究其他类型的按需路由协议,如基于地理位置的按需路由协议等。

  • 更复杂的模拟场景:

     模拟更复杂的网络场景,如节点异构性、不同类型的流量模式(如突发流量)、能量收集节点等。

  • 安全性与鲁棒性研究:

     研究按需路由协议在面对恶意攻击或节点故障时的安全性与鲁棒性。

  • 能量感知路由优化:

     基于节点能量消耗分布,设计能量感知的路由优化策略,以延长网络寿命。

  • 真实世界实验验证:

     在实际部署的即时网络中进行实验,验证模拟结果的有效性。

5. 结论

本文通过构建即时网络模拟环境,并结合数据包注入技术,对不同按需路由协议(AODV、DSR、AOMDV)在传递率、总能耗、节点能耗和延迟方面的性能进行了深入研究。研究结果表明,在即时网络这一动态、资源受限的环境下,不同的按需路由协议表现出不同的性能特点。AOMDV凭借其多径特性,在高负载和动态环境下能够提供更高的传递率和更低的延迟,尽管可能伴随略高的能量消耗。AODV则在大多数情况下表现出较好的均衡性。DSR在特定场景下有其优势,但在高动态高负载环境下可能面临挑战。

本研究为理解按需路由协议在即时网络中的行为提供了有价值的 insights,并为即时网络应用中路由协议的选择和性能优化提供了参考。未来的研究应进一步深入,探索更复杂、更真实的场景,并结合能量效率、安全性和鲁棒性等方面的考虑,以推动即时网络技术的进一步发展。

⛳️ 运行结果

🔗 参考文献

[1] 张正宜.海洋上空飞行自组织网络(FANET)中按需路由协议的研究[D].北京邮电大学,2020.

[2] 崔健.无线Mesh网络中编码感知路由策略的研究[D].辽宁大学[2025-04-24].DOI:CNKI:CDMD:2.1018.109547.

[3] 张福春,李文印,韩毅,等.基于电话语音卡的采油数据远程汇报系统[J].吉林大学学报(信息科学版), 2003.DOI:CNKI:SUN:CCYD.0.2003-02-007.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值