【图像去噪】基于原始对偶算法优化的TV-L1模型进行图像去噪研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

图像去噪是计算机视觉和图像处理领域中的基础性研究课题,其核心目标是去除图像中混杂的噪声,恢复图像的原始信息,提高图像的视觉质量和后续分析处理的准确性。在众多去噪模型中,全变差(Total Variation, TV)模型因其在保留图像边缘信息的同时抑制噪声扩散的优良特性而备受关注。然而,经典的TV模型通常采用L2范数作为数据保真项,在处理脉冲噪声等非高斯噪声时效果不佳。TV-L1模型通过引入L1范数作为数据保真项,能够更有效地处理稀疏噪声,尤其是在存在椒盐噪声等强噪声污染的情况下。然而,TV-L1模型由于其非光滑和不可微特性,传统的优化方法难以高效求解。近年来,基于原始对偶算法(Primal-Dual Algorithm)的优化方法在处理非光滑凸优化问题中展现出强大的能力。本文深入研究了基于原始对偶算法优化的TV-L1模型在图像去噪中的应用。首先,详细阐述了图像噪声的产生机制及常见的噪声类型。接着,回顾了TV模型的理论基础及其在图像去噪中的应用,并分析了TV-L2模型的优缺点。重点介绍了TV-L1模型的构建原理,解释了L1范数在处理稀疏噪声方面的优势。在此基础上,详细推导了基于原始对偶算法求解TV-L1模型的数学框架和迭代步骤。实验部分通过在不同噪声类型和噪声水平的图像上进行数值实验,将基于原始对偶算法优化的TV-L1模型与经典的TV-L2模型以及其他去噪方法进行比较。实验结果表明,基于原始对偶算法优化的TV-L1模型在保留图像细节、抑制噪声以及主观视觉效果方面均展现出优越性能,特别是在处理非高斯噪声时具有显著优势。最后,对本文的研究工作进行了总结,并展望了未来可能的研究方向。

关键词: 图像去噪;全变差;L1范数;原始对偶算法;TV-L1模型;非光滑优化

1. 引言

在图像的获取、传输和处理过程中,不可避免地会受到各种因素的干扰,导致图像质量下降,产生噪声。噪声的存在不仅影响了图像的视觉效果,也对后续的图像分析任务,如边缘检测、特征提取、目标识别等,带来了严重的挑战。因此,图像去噪作为图像处理领域的关键步骤,其重要性不言而喻。

早期的图像去噪方法主要集中在空域滤波,如均值滤波、中值滤波、高斯滤波等。这些方法虽然简单易实现,但往往在去除噪声的同时模糊了图像的边缘和细节,导致图像信息损失。随着傅里叶分析理论的发展,频域滤波方法也被应用于图像去噪,通过在频域对噪声进行抑制。然而,频域滤波对图像的全局信息进行处理,同样容易损伤图像的局部细节。

近年来,基于变分法的图像去噪模型取得了显著进展。变分法将图像去噪问题转化为一个能量泛函最小化问题,通过最小化一个由数据保真项和正则化项组成的泛函,在保留图像结构信息的同时抑制噪声。其中,全变差(Total Variation, TV)模型因其能够有效地保留图像边缘信息而受到广泛关注 [1]。Rud in 1992年首次将TV模型应用于图像去噪,提出了著名的ROF模型(Rud-Osher-Fatemi model)[1]。ROF模型将图像去噪问题建模为最小化图像梯度L1范数与数据保真项(通常是L2范数)之和的能量泛函。TV正则化项能够惩罚图像的梯度变化,从而实现图像的平滑,同时由于L1范数的特性,可以在保持常数区域平滑的同时允许边缘处的梯度变化,有效地保留了图像的尖锐边缘。

然而,经典的TV模型通常采用L2范数作为数据保真项,即TV-L2模型。L2范数对噪声的敏感性较高,适用于处理高斯噪声等均匀分布的噪声。但对于脉冲噪声、椒盐噪声等非高斯噪声,L2范数容易受到 outlier 的影响,去噪效果不佳 [2]。为了更好地处理这些稀疏且强度较大的噪声,TV-L1模型应运而生。TV-L1模型将数据保真项替换为L1范数,利用L1范数对稀疏信号的鲁棒性,能够有效地抑制脉冲噪声的干扰 [3]。然而,L1范数在零点附近不可微,给TV-L1模型的优化求解带来了挑战。传统的基于梯度下降或牛顿法等迭代方法在处理非光滑目标函数时往往收敛速度慢,甚至难以收敛到全局最优解。

近年来,随着凸优化理论和算法的飞速发展,一些新型的优化算法被应用于非光滑凸优化问题的求解。其中,基于原始对偶算法(Primal-Dual Algorithm)的方法因其高效性和鲁棒性而备受关注 [4, 5]。原始对偶算法通过同时迭代求解原始问题和对偶问题,将复杂的非光滑问题分解为一系列易于求解的子问题,从而实现高效优化。著名的原始对偶算法包括增广拉格朗日法(Augmented Lagrangian Method, ALM)和分裂Bregman法等,以及近年来发展起来的原始对偶分裂算法(Primal-Dual Splitting Method)[6]。这些算法在处理TV-L1模型这类非光滑凸优化问题中展现出强大的优势。

本文旨在深入研究基于原始对偶算法优化的TV-L1模型在图像去噪中的应用。我们将详细阐述TV-L1模型的数学构建,并重点推导基于原始对偶算法求解该模型的具体迭代步骤。通过数值实验,我们将验证基于原始对偶算法优化的TV-L1模型在不同噪声环境下的去噪性能,并与传统方法进行比较。

2. 图像噪声及TV模型回顾

2.1 图像噪声的类型

图像噪声是指在图像获取、传输和处理过程中,由于各种随机因素的干扰而叠加在图像上的不希望的信号。常见的图像噪声类型包括:

  • 高斯噪声:

     噪声的灰度值符合高斯分布,通常由于传感器内部电路噪声或照明不均引起。高斯噪声在图像中表现为随机的、强度较小的灰度值波动。

  • 椒盐噪声:

     噪声表现为随机分布的黑色(椒)和白色(盐)像素点,通常是由于图像传输中的信号丢失或传感器故障引起。椒盐噪声是一种典型的脉冲噪声,强度较大且稀疏。

  • 乘性噪声:

     噪声的强度与图像的灰度值成比例,通常由于图像传感器增益变化或图像记录介质的非线性特性引起。

  • 泊松噪声:

     噪声的强度与图像的灰度值有关,通常出现在低光照条件下的图像采集过程中,是一种典型的信号依赖性噪声。

本文主要关注处理高斯噪声和椒盐噪声,因为它们是常见的图像噪声类型,且TV-L1模型在处理这两种噪声时具有独特的优势。

2.2 全变差(TV)模型

TV模型的核心思想是利用图像的局部平滑性和全局分段常数的特性。在图像的平坦区域,梯度接近于零,TV值较小;而在边缘区域,梯度较大,TV值也较大。通过最小化TV,可以在抑制噪声的同时,保留图像的边缘信息。

2.3 TV-L2模型

TV-L2模型能够有效处理高斯噪声,通过最小化数据保真项使得去噪图像尽可能接近原始图像,同时通过最小化TV项对图像进行平滑。然而,对于脉冲噪声等非高斯噪声,L2范数对噪声的敏感性使得噪声点在去噪后的图像中仍然表现为亮点或暗点,去噪不彻底。

3. TV-L1模型

L1范数对稀疏噪声具有鲁棒性。当图像中存在少量强度较大的噪声点时,L1范数对这些 outlier 的惩罚相对较小,从而使得去噪过程不容易受到这些噪声点的干扰。相比之下,L2范数对 outlier 的惩罚是平方级的,容易使得去噪结果偏离真实值。因此,TV-L1模型更适合处理椒盐噪声等脉冲噪声。

然而,TV-L1模型的优化求解比TV-L2模型更具挑战性。TV项中的L1范数和数据保真项中的L1范数都使得能量泛函非光滑且不可微。传统的基于梯度下降的方法无法直接应用,需要采用一些专门的非光滑优化技术。

4. 基于原始对偶算法优化TV-L1模型

为了高效求解TV-L1模型,本文采用基于原始对偶算法的优化方法。我们将TV-L1模型转化为一个等价的约束优化问题,然后利用原始对偶算法进行求解。

我们将目标函数和约束项进行适当的分解,以便于原始对偶算法的应用。利用增广拉格朗日乘子法或原始对偶分裂法等思想,可以将上述问题转化为一系列交替最小化的问题。

5. 总结与展望

本文深入研究了基于原始对偶算法优化的TV-L1模型在图像去噪中的应用。通过详细阐述TV-L1模型的构建原理和基于原始对偶算法的求解过程,并进行数值实验验证,我们得出以下结论:

  1. TV-L1模型通过采用L1范数作为数据保真项,相比于TV-L2模型,能够更有效地处理稀疏噪声,尤其是在存在椒盐噪声等强噪声污染的情况下。

  2. 基于原始对偶算法能够高效求解TV-L1模型所对应的非光滑凸优化问题,通过将原问题分解为一系列易于求解的子问题,保证了算法的鲁棒性和收敛性。

  3. 实验结果表明,在处理椒盐噪声时,基于原始对偶算法优化的TV-L1模型在去噪效果、PSNR和SSIM值方面均显著优于TV-L2模型和中值滤波等传统方法,能够更好地保留图像细节。

  4. 在处理高斯噪声时,PD-TV-L1的性能与ADMM-TV-L2相当,但与BM3D等更先进的去噪方法相比仍有一定差距,表明TV模型在高斯噪声下去噪效果的局限性。

  • 与其他正则化项结合:

     探索将TV正则化与其他正则化项(如稀疏表示、非局部相似性等)结合,构建更强大的去噪模型,以应对更复杂的噪声情况和保留更多图像结构信息。

  • 处理彩色图像:

     将TV-L1模型扩展到彩色图像去噪,可以考虑在不同的颜色空间或通道上应用模型,或者利用颜色通道之间的相关性。

  • 算法加速:

     进一步研究更高效的原始对偶算法变体或其他优化算法,以提高TV-L1模型求解的计算效率,使其更适用于实时应用。

  • 理论分析:

     对基于原始对偶算法求解TV-L1模型的收敛速度和理论性能进行更深入的分析。

⛳️ 运行结果

🔗 参考文献

[1] 陈利霞.基于PDE的图像恢复模型和图像增强与分割算法研究[D].西安电子科技大学,2010.DOI:10.7666/d.y1706990.

[2] 任丽莎.数字图像去噪的模型研究[D].重庆理工大学[2025-04-25].DOI:CNKI:CDMD:2.1013.154293.

[3] 李旭超,马松岩,边素轩.对偶算法在紧框架域TV-L1去模糊模型中的应用[J].中国图象图形学报, 2015, 20(11):12.DOI:10.11834/jig.20151102.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值