✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
四旋翼无人机作为一种具有垂直起降、悬停以及高机动性特点的微小型飞行器,在军事、民用以及科研领域展现出巨大的应用潜力。其复杂的多自由度耦合系统特性对控制算法提出了严峻挑战。本文旨在深入研究基于PD(比例-微分)控制策略在AscTec鹈鹕(AscTec Pelican)四旋翼无人机上的应用,并利用MATLAB仿真平台对其性能进行建模、实现与验证。通过建立详细的四旋翼动力学模型,设计了位置与姿态解耦的PD控制器,并对控制器的比例增益(KpKp)和微分增益(KdKd)进行了参数调节。MATLAB仿真结果表明,该PD控制器能够有效实现对AscTec鹈鹕四旋翼无人机位置和姿态的稳定控制,为更高级的控制策略研究奠定了基础。
关键词: 四旋翼无人机;PD控制;AscTec鹈鹕;MATLAB仿真;姿态控制;位置控制
引言
近年来,四旋翼无人机技术飞速发展,其应用场景日益广泛,从航拍测绘、物流配送到灾害救援、农业植保,无不展现出其独特的优势。然而,四旋翼无人机本质上是一个非线性、强耦合、欠驱动的多输入多输出(MIMO)系统,其在飞行过程中容易受到外部扰动(如风)的影响,这对控制系统的设计提出了极高的要求。为了实现四旋翼无人机的稳定悬停、精确跟踪预设轨迹以及抗扰动能力,需要设计高效可靠的飞行控制算法。
传统的PID(比例-积分-微分)控制器因其结构简单、易于实现且鲁棒性较好,被广泛应用于工业控制领域,也常被作为四旋翼无人机控制系统的基础。然而,纯粹的PID控制器在处理快速变化的指令或存在较大扰动时,可能出现超调、振荡甚至失稳等问题。PD控制器作为PID控制器的一种简化形式,保留了比例项对误差的快速响应能力和微分项对误差变化趋势的预测能力,能够有效地抑制振荡并提高系统的稳定性。对于四旋翼无人机这类对实时性要求较高的系统,PD控制器在某些场景下能够提供良好的控制效果,同时避免了积分项带来的稳态误差累积问题(尽管这也会影响其稳态精度)。
AscTec鹈鹕四旋翼无人机是一款由德国AscTec公司生产的成熟商用平台,其具有较高的硬件性能和良好的开发接口,被广泛用于科研和教学领域。基于MATLAB仿真平台,可以方便地建立四旋翼无人机的动力学模型,设计和调试控制算法,并在虚拟环境中对控制器的性能进行全面的评估,大大降低了实际飞行的风险和成本。
本文将以AscTec鹈鹕四旋翼无人机为研究对象,重点探讨基于MATLAB的PD控制策略设计与实现。首先,将详细阐述四旋翼无人机的动力学模型;其次,基于该模型设计位置和姿态解耦的PD控制器;然后,利用MATLAB/Simulink对控制系统进行仿真验证,并对控制器参数进行调节;最后,对仿真结果进行分析,总结PD控制器在AscTec鹈鹕上的应用效果及局限性。
1. 四旋翼无人机动力学模型
四旋翼无人机通常采用“X”或“+”型结构,由四个安装在机体上的电机驱动螺旋桨产生升力。通过独立控制四个电机的转速,可以实现对无人机的姿态(滚转、俯仰、偏航)和位置(x、y、z)的控制。为了简化模型,本文做出以下假设:
-
无人机是一个刚体;
-
螺旋桨产生的拉力与电机转速的平方成正比;
-
忽略空气阻力、旋翼间耦合效应以及电机动力学;
-
机体质量均匀分布。
根据牛顿-欧拉方程,可以将四旋翼无人机的动力学模型分解为平移运动和旋转运动两部分。
1.1 平移运动模型
无人机的平移运动在惯性坐标系(earth-fixed frame)下描述。假设惯性坐标系的原点固定在地面,Z轴垂直向上。
1.2 旋转运动模型
无人机的旋转运动在机体坐标系下描述。假设机体坐标系的原点位于无人机的重心,轴与机体的对称轴对齐。
2. PD控制器设计
基于四旋翼无人机的动力学模型,可以采用分层控制或解耦控制的思想设计控制器。由于四旋翼的平移运动与姿态紧密耦合,通常将姿态控制作为内环,位置控制作为外环。PD控制器在控制误差和误差变化率的基础上产生控制量,适用于对快速响应和抑制超调有一定要求的系统。
3. MATLAB仿真实现
本文使用MATLAB/Simulink对上述PD控制器进行仿真实现。
3.1 四旋翼无人机模型搭建
在Simulink中,可以利用积分器、增益模块、函数模块、矩阵运算模块等搭建四旋翼无人机的动力学模型。需要输入电机角速度,输出位置、速度、姿态和角速度。关键模块包括:
- 电机动力学模块:
将输入的电机指令(例如期望的角速度平方)转换为实际的电机角速度(通常简化为一阶或二阶系统)。本文简化为直接使用期望的角速度平方计算拉力和反扭矩。
- 力与力矩计算模块:
- 平移动力学模块:
根据总拉力、重力以及当前姿态计算线加速度,然后通过积分得到线速度和位置。
- 旋转动力学模块:
根据力矩和惯性矩阵计算角加速度,然后通过积分得到机体角速度。
- 姿态更新模块:
根据机体角速度计算欧拉角变化率,然后通过积分得到欧拉角。
- 坐标系转换模块:
实现惯性坐标系和机体坐标系之间的转换。
3.2 PD控制器模型搭建
在Simulink中,可以利用差分模块(计算误差)、比例增益模块、微分模块(计算误差变化率)和求和模块搭建PD控制器。
- 位置控制器模块:
接收期望位置和当前位置作为输入,输出期望的姿态角和总升力。
- 姿态控制器模块:
接收期望姿态角和当前姿态角作为输入,输出三个控制力矩。
3.3 参数调节
PD控制器的性能严重依赖于比例增益 KpKp 和微分增益 KdKd 的选取。参数调节是一个迭代优化的过程,可以通过试凑法、 Ziegler-Nichols 法或其他优化算法进行。在Simulink仿真中,可以方便地修改增益值,观察系统响应,并根据性能指标(如超调量、稳定时间、稳态误差)进行调整。
一般来说:
-
增加 KpKp 可以提高系统的响应速度,减小稳态误差,但也可能导致超调和振荡。
-
增加 KdKd 可以抑制振荡,提高系统的稳定性,但可能降低响应速度。
参数调节通常遵循先调内环(姿态控制)再调外环(位置控制)的顺序。首先单独调节姿态控制器的增益,使其能够快速稳定地跟踪期望姿态;然后在此基础上调节位置控制器的增益,使其能够快速准确地跟踪期望位置。
3.4 仿真流程
-
设置无人机的物理参数(质量、惯性矩阵、拉力系数、反扭矩系数等)。
-
设置控制器的初始增益。
-
设置仿真时间和步长。
-
给定期望的轨迹或目标点。
-
运行Simulink模型。
-
分析仿真结果,包括位置、姿态、速度、角速度的曲线以及控制输入的变化。
-
根据性能指标调整控制器增益,重复步骤5-7,直到达到满意的控制效果。
4. 仿真结果与分析
通过MATLAB/Simulink仿真,可以观察PD控制器在不同场景下对AscTec鹈鹕四旋翼无人机的控制效果。
4.1 悬停控制
通过仿真可以观察无人机从初始状态逐渐趋近并稳定在期望悬停点。合适的PD增益能够使无人机在较短时间内达到稳定状态,且具有较小的超调和稳态误差。微分项的存在有助于抑制因比例项引起的振荡。
4.2 轨迹跟踪
设置期望轨迹,例如直线、圆周或螺旋线。通过仿真可以观察无人机是否能够准确地跟踪期望轨迹。PD控制器在轨迹跟踪方面的性能取决于其对误差和误差变化率的响应速度。对于快速变化的轨迹,单纯的PD控制可能存在一定的滞后。
4.3 抗扰动能力
在仿真模型中加入外部扰动,例如模拟风力。观察无人机在受到扰动时,PD控制器是否能够有效地抵消扰动的影响,使无人机重新回到期望位置或轨迹。PD控制器的抗扰动能力主要取决于其对误差变化率的响应,微分增益越大,对扰动的抑制能力越强,但也可能对噪声更敏感。
4.4 参数调节的影响
通过对比不同PD增益下的仿真结果,可以直观地理解参数对控制性能的影响。例如,过小的比例增益会导致响应缓慢,稳态误差大;过大的比例增益可能导致超调和振荡。过小的微分增益对振荡抑制不足;过大的微分增益可能使系统变得过于稳定甚至出现低速振荡。
分析总结:
MATLAB仿真结果表明,基于位置和姿态解耦的PD控制器能够有效实现对AscTec鹈鹕四旋翼无人机的基本控制功能,包括悬停和简单的轨迹跟踪。PD控制器的优点在于其简单性和易于实现。通过调整比例和微分增益,可以在一定程度上优化系统的响应速度、稳定性和超调量。
然而,PD控制器也存在一定的局限性:
- 稳态误差:
纯粹的PD控制器无法完全消除稳态误差,特别是在存在持续扰动或模型不准确的情况下。
- 对模型依赖:
PD增益的选取依赖于被控对象的动力学特性,对于模型变化或不确定的系统,PD控制器的性能可能下降。
- 对噪声敏感:
微分项对高频噪声具有放大作用,可能导致控制输出的抖动。
- 非线性处理能力有限:
四旋翼无人机是一个非线性系统,PD控制器是基于线性控制理论设计的,在远离平衡点或存在大角度机动时,控制效果可能不理想。
尽管存在这些局限性,PD控制器作为基础控制策略,为更高级的控制方法提供了起点。例如,可以在PD控制器的基础上引入积分项形成PID控制器,以消除稳态误差;或者结合前馈控制、状态反馈控制、自适应控制、鲁棒控制等技术,进一步提升系统的性能和鲁棒性。
5. 结论
本文详细研究了基于MATLAB的AscTec鹈鹕四旋翼无人机PD控制器的设计与实现。通过建立四旋翼无人机的动力学模型,设计了位置与姿态解耦的PD控制器,并在MATLAB/Simulink仿真平台进行了验证。仿真结果表明,所设计的PD控制器能够有效地实现对无人机位置和姿态的稳定控制,验证了PD控制策略在四旋翼无人机控制中的可行性。
然而,PD控制器在处理稳态误差、非线性和外部扰动方面存在一定的不足。未来的研究工作可以在此基础上,探索更先进的控制策略,例如:
- 引入积分项:
设计PID控制器,以消除稳态误差。
- 非线性控制:
利用反步法、滑模控制等非线性控制方法,更好地处理系统的非线性特性。
- 自适应控制:
设计自适应控制器,以应对模型不确定性和外部扰动。
- 基于学习的控制:
结合强化学习等技术,让无人机自主学习优化控制策略。
- 传感器融合与状态估计:
结合IMU、GPS、视觉等传感器数据,提高状态估计的精度,为控制器提供更准确的信息。
⛳️ 运行结果
🔗 参考文献
[1] 张红,龙圣均,侯灵霞,等.仿生鹈鹕水面漂浮物打捞装置结构设计与分析[J].机械设计与研究, 2024, 40(1):114-120.
[2] 侯永锋,陆连山,高尚德,等.基于PD算法的四旋翼飞行器控制系统研究[J].机械科学与技术, 2012, 31(3):4.DOI:CNKI:SUN:JXKX.0.2012-03-005.
[3] 王丹.基于DMOC的四旋翼飞行器轨迹优化与控制算法研究[D].北京理工大学,2015.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇