✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
疾病的传播一直是人类社会面临的严峻挑战,对公共卫生、社会经济甚至政治稳定都产生着深远影响。理解疾病传播的规律,预测其发展趋势,对于制定有效的防控策略至关重要。自上世纪初以来,数学模型在疾病传播研究中发挥了越来越重要的作用。其中,仓室模型作为一类基础且应用广泛的模型,通过将人群划分为不同的状态(仓室),并描述个体在这些状态之间的转移速率,为理解疾病动力学提供了有力的工具。本文将聚焦于SEIR(易感-暴露-传染-恢复)模型,深入探讨其原理、应用以及在疾病传播建模中的优势与局限性。
一、仓室模型概述与 SEIR 模型的起源
仓室模型,又称隔室模型,将研究群体划分为若干个相互排斥的亚群或“仓室”,每个仓室代表人群在疾病传播过程中的某种特定状态。个体在不同仓室之间以一定的速率转移,这些速率通常由疾病的生物学特性、人口学特征以及干预措施等因素决定。常见的仓室模型包括 SIS(易感-传染-易感)模型、SIR(易感-传染-恢复)模型等。
SEIR 模型是 SIR 模型的一种扩展,引入了“暴露”状态(E),即个体感染了病原体,但尚未表现出传染性。这一状态的存在对于许多具有潜伏期的传染病至关重要。例如,麻疹、流感、COVID-19 等疾病都存在显著的潜伏期,感染者在潜伏期内虽然携带病原体,但通常不具备传染性。SEIR 模型通过显式地描述这一过程,使得模型更接近真实世界的疾病传播动态。SEIR 模型的起源可以追溯到对特定具有潜伏期传染病的早期研究,其数学形式为理解和预测这类疾病的传播提供了新的视角。
二、SEIR 模型的基本结构与方程
SEIR 模型将人群划分为四个主要的仓室:
- S(易感者,Susceptible):
指未感染病原体,且容易被感染的个体。
- E(暴露者,Exposed):
指已经感染病原体,但尚未出现症状或不具备传染性的个体,即处于潜伏期的个体。
- I(传染者,Infectious):
指已经感染病原体,且具备传染性的个体。
- R(恢复者,Recovered):
指已经从疾病中恢复,并获得免疫力的个体。在某些模型中,R 仓室也可以包含因病死亡的个体。
在 SEIR 模型中,个体在这些仓室之间的转移通常由以下过程描述:
- S → E:
易感者通过与传染者接触而被感染,进入暴露仓室。转移速率取决于易感者的数量、传染者的数量以及感染率(通常用 ββ 表示,代表单位时间内一个易感者与一个传染者接触并成功导致感染的概率)。
- E → I:
暴露者经过潜伏期后,进入传染仓室。转移速率取决于暴露者的数量以及潜伏期结束的速率(通常用 σσ 表示,代表单位时间内暴露者转化为传染者的比例,1σσ1 即为平均潜伏期)。
- I → R:
传染者经过感染期后,进入恢复仓室。转移速率取决于传染者的数量以及恢复的速率(通常用 γγ 表示,代表单位时间内传染者转化为恢复者的比例,1γγ1 即为平均感染期)。
考虑到人口的动态变化,一个完整的 SEIR 模型通常还需要包含出生和死亡。在经典的 SEIR 模型中,通常假设出生率与总人口死亡率相等,以维持人口总数的稳定,但这并非必须。更复杂的模型可以引入年龄结构、迁移等因素。
- ββ
是感染率参数。
- σσ
是潜伏期结束速率参数。
- γγ
是恢复率参数。
- μμ
是与疾病相关的死亡率(如果R仓室不包含死亡个体,此项为0)。
- νν
是恢复者失去免疫力的速率(如果恢复者不失去免疫力,此项为0)。
- ΛΛ
是出生率(如果考虑人口出生)。
这些方程描述了在给定参数下,不同仓室个体数量的瞬时变化率。通过求解这个常微分方程组,我们可以预测在不同初始条件下,疾病在人群中的传播动态。
三、SEIR 模型在疾病传播建模中的应用与分析
SEIR 模型因其能够反映疾病的潜伏期特性,在多种传染病的建模中得到了广泛应用,例如:
- 流感传播预测:
流感具有显著的潜伏期,SEIR 模型可以用于预测流感季节性流行的峰值、持续时间和总体规模。
- COVID-19 疫情研究:
COVID-19 具有相对长的潜伏期和无症状/轻症传播的特点,SEIR 模型及其变种(例如引入无症状感染者、不同传播途径等)在理解疫情发展、评估防控措施效果等方面发挥了重要作用。
- 疫苗接种策略评估:
通过修改模型,引入疫苗接种仓室和相应的转移速率,可以评估不同疫苗接种率和策略对疾病传播的影响。
- 非药物干预措施(NPIs)评估:
封锁、社交距离、佩戴口罩等 NPIs 可以通过影响感染率 ββ 参数来反映,从而评估其对疫情的控制效果。
SEIR 模型的一个重要分析工具是基本再生数(Basic Reproduction Number, R0R0)。R0R0 定义为在完全易感的群体中,一个典型的传染者在整个感染期内平均能够感染的易感个体数量。对于基本的 SEIR 模型,R0=βγR0=γβ。如果 R0>1R0>1,疾病将在人群中持续传播并可能导致流行;如果 R0<1R0<1,疾病将逐渐消退。对于具有潜伏期的 SEIR 模型,更精确的 R0R0 计算可能涉及到更多的参数,但其核心意义在于衡量疾病的传播潜力。理解 R0R0 对于评估疾病的传播风险和制定控制目标至关重要。通过改变模型参数(例如,降低 ββ 通过 NPIs,或增加 γγ 通过治疗),我们可以模拟不同的干预措施对 R0R0 和疫情发展的影响。
此外,通过对模型方程进行数值求解,我们可以得到各仓室个体数量随时间变化的曲线,即所谓的“流行曲线”。这些曲线可以展示疫情的爆发时间、峰值高度、持续时间等关键特征。结合实际疫情数据对模型进行参数拟合,可以提高模型的预测准确性。
四、SEIR 模型的优势与局限性
SEIR 模型作为疾病传播建模的基础模型之一,具有以下优势:
- 反映潜伏期:
能够显式地描述疾病的潜伏期,更适用于具有潜伏期的传染病。
- 结构清晰:
模型结构简单,概念清晰,易于理解和实现。
- 分析性强:
能够通过基本再生数等指标进行理论分析,理解疾病的传播潜力。
- 可扩展性:
易于在基本模型的基础上进行扩展,引入年龄结构、空间异质性、疫苗接种、治疗等更复杂的因素。
然而,SEIR 模型也存在一些局限性:
- 同质化假设:
经典 SEIR 模型假设人群是均匀混合的,个体之间接触频率相同。这在现实中往往不成立,个体之间的接触模式具有异质性。
- 参数估计困难:
模型中的参数(如 ββ, σσ, γγ)通常需要通过实际数据进行估计,但数据获取和处理可能存在困难,且参数可能随时间变化。
- 简化处理:
模型对疾病的生物学过程、个体行为、环境因素等进行了简化,可能无法捕捉到所有影响疾病传播的复杂细节。
- 忽略空间结构:
经典 SEIR 模型是基于常微分方程的,忽略了疾病传播的空间异质性。
五、SEIR 模型的扩展与未来发展
为了克服经典 SEIR 模型的局限性,研究人员对模型进行了各种扩展:
- 基于个体的模型(ABM):
通过模拟每个个体的行为和交互,更细致地捕捉人群异质性和空间结构。
- 网络模型:
将人群建模为网络,节点代表个体,边代表接触关系,从而更准确地描述个体之间的接触模式。
- 引入年龄结构:
将人群按年龄分组,考虑不同年龄组的接触模式和易感性差异。
- 考虑环境传播:
引入环境仓室,描述病原体在环境中的存活和传播。
- 结合机器学习:
利用机器学习方法对模型参数进行估计、预测,或构建更复杂的非线性模型。
- 多尺度建模:
结合不同尺度的模型,例如将仓室模型与微观个体模型或宏观地理空间模型相结合。
未来的疾病传播建模研究将更加注重模型的复杂性和精细度,以更好地反映真实世界的复杂性。同时,如何更有效地利用大数据、人工智能等技术提高模型的预测能力和可解释性,将是重要的研究方向。
结论
SEIR 模型作为经典的疾病传播仓室模型,成功地将疾病的潜伏期引入模型中,为理解和预测具有潜伏期传染病的传播动态提供了有力的工具。通过分析模型的参数和流行曲线,我们可以评估疾病的传播潜力,预测疫情的发展趋势,并为制定和评估防控策略提供科学依据。尽管存在一些局限性,但通过不断的扩展和改进,SEIR 模型及其变种将继续在疾病传播研究中发挥重要作用。未来的研究将更加强调模型的复杂性、数据驱动和多学科交叉,以应对日益复杂的全球公共卫生挑战。对 SEIR 模型及其应用的深入理解,对于公共卫生决策者、流行病学家和相关研究人员都具有重要意义。
⛳️ 运行结果
🔗 参考文献
[1] 尹丽杰,孙启梅,李雨薇,等.一种改进的SEIR高校突发事件传播模型[J].数学的实践与认识, 2018, 48(22):7.DOI:CNKI:SUN:SSJS.0.2018-22-012.
[2] 周文,范玲瑜,吴涛,等.基于SEIR模型改进的疫情传播模型的研究与验证[J].火力与指挥控制, 2020(045-010).
[3] 黄毅,廖新元.一类具有随机扰动的SEIR传染病随机模型的稳定性分析[J].应用数学进展, 2024, 13(7):3400-3406.DOI:10.12677/aam.2024.137325.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇