✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在科学研究和工程实践中,我们常常面临着分析和理解非平稳信号的挑战。这类信号的统计特性随时间变化,使得传统的时域或频域分析方法难以准确揭示其内在规律。例如,生物医学信号(如心电图、脑电图)、地球物理信号(如地震波)、经济时间序列以及机械振动信号等,都普遍表现出非平稳性。为了有效地处理这些信号,我们需要能够自适应地分解其复杂结构,从而提取出重要的成分、识别潜在的模式并降低噪声干扰。滑动奇异谱分析(Sliding Singular Spectrum Analysis, SSSA)作为一种强大的数据驱动的非平稳信号分解工具,应运而生,并在众多领域展现出卓越的效能。
奇异谱分析(Singular Spectrum Analysis, SSA)最初是为处理平稳或弱非平稳时间序列而设计的。它通过构建轨迹矩阵并对其进行奇异值分解(Singular Value Decomposition, SVD),将原始时间序列分解为若干个彼此正交的成分,每个成分对应于一个奇异值和对应的左、右奇异向量。这些成分通常具有不同的时间和频率特性,可以用于识别趋势、周期性以及噪声等。然而,当信号的非平稳性较强时,SSA基于全局轨迹矩阵的分解可能无法捕捉到信号在不同时间段内的局部特性变化,导致分解结果不够准确。
为了克服这一局限性,滑动奇异谱分析将“滑动窗口”的思想引入到SSA中。SSSA的核心思想是在原始时间序列上以固定的窗口长度和滑动步长,依次截取一系列局部时间序列段。对于每个截取的局部时间序列段,SSSA都执行传统的SSA过程,构建局部轨迹矩阵并进行奇异值分解,得到该时间段内的局部奇异值和奇异向量。通过对这些局部分解结果进行适当的组合和重构,SSSA能够获得反映信号非平稳特性的时间-成分分解。
具体而言,SSSA的处理流程大致可以概括为以下几个步骤:
-
成分分组与局部重构: 根据奇异值的大小或者成分的物理意义,将每个窗口内的奇异值和对应的奇异向量进行分组。例如,可以将较大的奇异值对应的成分视为主要成分(如趋势或周期),较小的奇异值对应的成分视为噪声。然后,对每个分组,利用对应的奇异值、左奇异向量和右奇异向量,重构出该窗口内的局部重构成分。
-
全局成分合成: 将所有窗口内重构出的局部成分进行合成,得到反映整个序列的非平稳成分。常用的合成方法包括加权平均,即根据窗口的重叠情况,对重叠区域内的局部重构成分进行加权求和。这使得最终的成分能够平滑地反映信号在不同时间段内的变化。
SSSA相对于传统SSA的主要优势在于其能够有效捕捉信号的非平稳特性。通过在局部窗口内进行分解,SSSA可以识别出信号在不同时间段内存在的不同模式或频率成分。例如,一个周期性信号,其周期和幅度可能会随时间发生变化,SSSA能够在不同的窗口内识别出不同的周期和幅度,并通过合成得到反映这些变化的成分。此外,SSSA还具有良好的鲁棒性,对于噪声干扰具有一定的抑制能力,可以将噪声成分从信号中分离出来。
SSSA的关键参数是窗口长度 LL 和滑动步长 SS。窗口长度的选择需要权衡分辨率和稳定性。较小的窗口长度可以提供更高的时域分辨率,更能捕捉快速变化的局部特性,但可能导致分解结果不稳定;较大的窗口长度可以提供更稳定的分解结果,但会降低时域分辨率。滑动步长影响窗口之间的重叠程度和计算效率。较小的滑动步长会增加计算量,但可以获得更平滑的成分合成结果;较大的滑动步长会降低计算量,但可能导致成分合成不够平滑。这些参数的选择通常需要结合先验知识和实验结果进行调整。
滑动奇异谱分析在众多领域都取得了显著的应用成果。在生物医学工程中,SSSA被用于分析脑电图(EEG)信号,识别不同脑区的功能活动和时变连接模式,帮助诊断癫痫等神经系统疾病。在地球物理学中,SSSA被用于分析地震波信号,识别不同的地震波相和时变频谱特征,有助于地震预警和地下结构探测。在机械工程中,SSSA被用于分析机械设备的振动信号,识别故障的早期征兆和时变故障模式,实现预测性维护。在经济学中,SSSA被用于分析经济时间序列,识别时变的趋势、周期和波动,帮助进行经济预测和政策制定。
尽管SSSA在处理非平稳信号方面表现出色,但它也存在一些潜在的挑战和未来发展方向。首先,参数选择的优化是一个关键问题,如何根据信号特性自动选择最优的窗口长度和滑动步长仍然需要深入研究。其次,如何更准确地对局部成分进行分组和合成,以更好地反映信号的内在结构,也是一个值得探索的方向。此外,将SSSA与其他先进的数据分析技术相结合,例如深度学习,可以进一步提升其在复杂非平稳信号处理中的性能。
总而言之,滑动奇异谱分析作为一种基于滑动窗口和奇异值分解的数据驱动方法,为非平稳信号的分解提供了一个强大的工具。它能够有效地捕捉信号的时变特性,将复杂的信号分解为具有物理意义的成分,从而为信号的进一步分析、理解和应用奠定基础。随着对非平稳信号研究的不断深入和计算能力的提升,SSSA及其改进方法必将在更多领域展现其独特的价值,为解决实际问题提供更精准、更有效的手段。
⛳️ 运行结果
🔗 参考文献
[1] 白丽荣.基于小波变换的心电信号处理技术的研究[D].山东科技大学[2025-05-04].DOI:CNKI:CDMD:2.2006.185046.
[2] 孙苗钟.基于MATLAB的振动信号平滑处理方法[J].电子测量技术, 2007, 30(6):3.DOI:10.3969/j.issn.1002-7300.2007.06.017.
[3] 葛哲学 陈仲生.MATLAB时频分析技术及其应用(附光盘)[M].人民邮电出版社,2006.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇