✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
【玫瑰图】风速与风向玫瑰图:气候数据可视化与分析的重要工具
在气候学、气象学、环境科学、工程学乃至交通规划等众多领域,风作为一种重要的自然现象,其特性对于理解和预测天气模式、评估污染物扩散、设计结构物以及规划航线等至关重要。风的特性主要包括风速和风向,这两个参数的结合能够描绘出某一地点在一段时间内风场的基本特征。然而,直接罗列大量的风速和风向数据既不直观也不易于分析。为了有效地可视化和概括风的分布规律,**风速与风向玫瑰图(Wind Rose)**应运而生,并成为一个不可或缺的气候数据可视化工具。
一、 风速与风向玫瑰图的基本概念与构造
风速与风向玫瑰图是一种特殊的极坐标图,它将风向按照一定的间隔(通常是16个或8个方向,如北、东北偏北、东北、东偏北等)划分,并以这些方向为轴绘制扇形。每个扇形的大小(通常是半径或面积)代表了在特定方向上风出现的频率或持续时间。同时,在每个扇形内部,通过不同的颜色或图案区分不同的风速区间。这样,一张风速与风向玫瑰图就能同时展现风在不同方向上的出现频率以及在各个方向上的风速分布情况。
其基本构造要素包括:
- 中心点:
代表观测地点。
- 方向轴:
从中心点向外辐射的直线,代表不同的风向。通常以正北方向为0度或360度,顺时针旋转表示不同的方向。
- 扇形区域:
每个方向轴之间的区域构成一个扇形,代表该方向的风。
- 频率/持续时间表示:
扇形的半径或面积通常与该方向上风出现的频率或持续时间成正比。通常在图的下方或侧边会提供一个比例尺或图例,说明扇形大小与频率/持续时间的关系。
- 风速分级与颜色编码:
在每个扇形内部,根据风速的不同,用不同的颜色或图案进行填充。图例中会详细说明每种颜色或图案代表的风速区间(例如:0-1 m/s, 1-3 m/s, 3-5 m/s, >5 m/s等)。
- 静风频率:
有些玫瑰图会在中心点显示静风(风速低于某一阈值,通常为0.5 m/s或更低)出现的频率。
通过这些元素的有机结合,风速与风向玫瑰图能够以一种简洁、直观的方式呈现复杂的风场数据。
二、 风速与风向玫瑰图的解读与应用
解读一张风速与风向玫瑰图,需要关注以下几个关键点:
- 主导风向:
扇形面积最大或半径最长的方向即为该时段的主导风向。这对于了解该地气候特征、污染物扩散路径以及建筑物抗风设计至关重要。
- 风向分布的均匀性:
观察各个方向扇形大小的差异,可以判断风向分布是集中在少数几个方向,还是相对均匀分布。
- 风速在不同方向上的分布:
通过观察不同颜色条在各个扇形内的分布情况,可以了解在哪个方向上更容易出现强风,或者在哪个方向上以微风为主。
- 静风频率:
高静风频率可能意味着污染物容易在该区域积聚。
风速与风向玫瑰图的应用极为广泛:
- 气候研究:
分析长期风场数据,揭示区域气候特征,如季风方向、盛行风的变化等。
- 大气环境评估:
预测污染物扩散路径和范围,为工业选址、城市规划以及环境保护提供依据。例如,了解主导风向下游区域的污染物浓度可能更高。
- 风能资源评估:
确定风能潜力较大的区域和方向,指导风力发电场的选址和设计。高频率且具有较高风速的方向是理想的风能开发区域。
- 航空与航海:
机场跑道方向的设计需要考虑主导风向,以确保飞机起降安全。船舶航行也需要考虑风向和风速对航速和稳定性的影响。
- 土木工程:
建筑物的抗风设计、桥梁的风荷载计算等都需要参考风速与风向玫瑰图提供的数据。
- 农业:
了解风场特性有助于防范风灾,合理安排作物种植方向,以及利用风进行自然通风。
- 户外活动规划:
了解风向和风速有助于帆船运动、滑翔伞等户外运动的规划和安全评估。
三、 风速与风向玫瑰图的优势与局限性
作为一种可视化工具,风速与风向玫瑰图具有显著的优势:
- 直观性:
将复杂的风场数据以图形形式呈现,易于理解和比较。
- 概括性:
在一张图中能够概括出一段时间内的风场整体特征。
- 信息量丰富:
同时呈现风向、风速以及它们的频率分布,信息密度高。
然而,风速与风向玫瑰图也存在一定的局限性:
- 忽略时间维度:
传统的风速与风向玫瑰图是对一段时间内数据的汇总,无法直接反映风场随时间的动态变化。虽然可以通过绘制不同时间段(如按月、按季)的玫瑰图来展示季节性变化,但仍无法捕捉更精细的时间尺度变化。
- 空间维度的缺失:
一张玫瑰图通常代表一个测站的数据,无法直接显示不同地点之间的风场差异。需要绘制多个测站的玫瑰图进行对比分析。
- 数据分组的精度:
风向和风速的分组精度会影响图的细节表现。过于粗略的分组可能掩盖一些重要的信息,而过于精细的分组可能导致图变得过于复杂。
- 无法直接表达风的变率:
玫瑰图主要展示风的平均分布特征,对于风的阵性(即风速和风向的快速波动)则无法直接表达。
为了弥补这些局限性,研究者们也发展出了一些改进的风场可视化方法,例如使用向量场图、流线图等来展示风场的空间分布和随时间的变化,或者结合其他统计图表来分析风的变率。但尽管如此,风速与风向玫瑰图因其简洁、直观和易于理解的特点,仍然是风场分析中最常用和最有价值的工具之一。
四、 结论
风速与风向玫瑰图作为一种经典且实用的气候数据可视化工具,在风场分析、环境评估、工程设计等众多领域发挥着不可替代的作用。它通过将复杂的风速与风向数据以极坐标扇形图的形式呈现,帮助人们直观地理解风的分布规律,识别主导风向和风速特征。尽管存在一些局限性,但通过与其他分析方法和可视化工具的结合,风速与风向玫瑰图仍然是深入理解和应用风场信息的重要起点。随着数据可视化技术的不断发展,相信未来风速与风向玫瑰图的设计和应用将更加精细和智能化,为更广泛的领域提供更强大的支持。对风速与风向玫瑰图的深入理解和熟练应用,是进行相关领域研究和实践的基础,也是科学认识和利用风这一重要自然资源的关键环节。
⛳️ 运行结果
🔗 参考文献
[1] 宁萌,董胜.风玫瑰图的Matlab编程绘制[J].港工技术, 2007.DOI:JournalArticle/5aea2d81c095d713d8a3be22.
[2] 张立波.基于Matlab的风玫瑰图绘制[J].电脑编程技巧与维护, 2012(18):26-27.DOI:10.3969/j.issn.1006-4052.2012.18.012.
[3] 张立波.基于Matlab的风玫瑰图绘制[J].电脑编程技巧与维护, 2012, 000(018):26-27,69.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇