【姿态图优化(PGO)】三维位姿图优化中高斯-牛顿方法的新参数化附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

三维位姿图优化 (Pose Graph Optimization, PGO) 是同步定位与建图 (Simultaneous Localization and Mapping, SLAM) 领域中的关键技术之一。在 SLAM 后端处理中,通过构建位姿图,将机器人或传感器在不同时刻的位姿作为节点,观测或里程计信息作为边,PGO 的目标是找到一组最优的位姿,使得所有边的约束误差最小化。这一过程通常被建模为一个非线性最小二乘问题。高斯-牛顿 (Gauss-Newton) 方法及其变体,如 Levenberg-Marquardt (LM) 方法,是解决这类问题的常用且有效的方法。然而,在三维空间中,位姿由旋转和平移组成,直接在高维欧氏空间中对位姿进行参数化和优化会引入冗余的自由度和潜在的奇异性问题,特别是在处理旋转时。传统的欧拉角或轴角参数化在特定配置下会发生万向锁 (gimbal lock),而直接对旋转矩阵进行优化则受到正交约束的限制,使得优化过程更为复杂。因此,探索更加高效和鲁棒的位姿参数化方法,以提升高斯-牛顿方法的性能,对于提高 PGO 的精度和效率至关重要。

本文旨在深入探讨三维位姿图优化中高斯-牛顿方法的新参数化策略。首先,我们将回顾传统的 PGO 问题 Formulation 和高斯-牛顿方法的原理。接着,我们将分析传统位姿参数化方法的局限性。重点将放在引入新的参数化方法,并阐述其在高斯-牛顿框架下的理论基础和优势。最后,我们将讨论新参数化可能带来的挑战以及未来的研究方向。

一、三维位姿图优化的数学 Formulation 与高斯-牛顿方法回顾

二、传统位姿参数化的局限性

    这些传统参数化方法的局限性在于,它们要么存在奇异性问题,要么在高斯-牛顿框架下与李群/李代数的结构不完全匹配,导致在计算雅可比矩阵、更新规则等方面不够简洁或高效。

    三、三维位姿图优化中高斯-牛顿方法的新参数化

    为了克服传统参数化方法的局限性,研究人员提出了许多新的参数化方法,这些方法旨在更好地融入高斯-牛顿框架,利用李群/李代数的结构,从而提高优化的效率和鲁棒性。这里,我们将介绍几种具有代表性的新参数化思路。

    3.1 基于李代数切空间的参数化 (Parameterization on Tangent Space)

    这个推导涉及到对数映射的导数以及伴随矩阵。通过这种基于李代数切空间的参数化,我们可以直接在李群流形上进行优化,避免了欧氏空间参数化的奇异性问题。这种方法并非对位姿本身进行新的参数化,而是定义了在高斯-牛顿迭代过程中参数更新的方式,使其与李群结构兼容。

    3.2 使用流形上的指数映射进行参数化 (Parameterization using Exponential Map on Manifold)

    3.3 基于扰动模型的参数化 (Parameterization using Perturbation Model)

    传统的位姿更新通常采用“左乘扰动”或“右乘扰动”的方式:

    这个计算需要李群/李代数的链式法则和性质。通过精心选择扰动模型并推导相应的雅可比矩阵,可以简化优化过程的实现,提高计算效率。一些研究工作专注于提供更简洁、更具计算效率的雅可比矩阵计算公式,这也被视为一种新的参数化或实现策略。

    3.4 组合平移和旋转的新参数化 (Novel Combined Parameterization for Translation and Rotation)

    此外,也有研究探索了其他表示三维刚体运动的方式,例如 dual quaternions (对偶四元数) 或 screw theory (螺旋理论),并将这些理论应用于位姿图优化中。这些新的数学工具提供了描述和操作三维位姿的新视角,并可能为高斯-牛顿方法带来新的参数化方式,使得雅可比矩阵的计算更加直观或紧凑。然而,这些方法通常需要对相关的数学理论有深入的理解,并且在实际实现中可能比传统的基于李群/李代数的方法更复杂。

    四、新参数化带来的优势与挑战

    4.1 优势

    新的参数化方法,特别是基于李代数切空间的参数化或使用流形上的指数映射进行参数化,在高斯-牛顿方法在三维位姿图优化中带来了显著的优势:

    • 避免奇异性问题:

       直接在李代数空间进行更新,避免了欧拉角等参数化的万向锁问题,提高了优化的鲁棒性。

    • 与李群结构兼容:

       更好地利用了李群/李代数的数学结构,使得位姿更新更符合刚体运动的本质,理论上更为严谨。

    • 简化雅可比矩阵推导 (在特定框架下):

       虽然完整的雅可比推导需要李群/李代数知识,但在确定了扰动模型后,一旦推导出通用的雅可比公式,后续的实现可以复用这些公式,避免针对不同参数化重复推导。

    • 提高收敛效率和精度:

       更合适的参数化可以改善优化问题的条件数,使得高斯-牛顿迭代更快地收敛到最优解,并提高最终的优化精度。

    4.2 挑战

    引入新的参数化方法也带来了一些挑战:

    • 理解李群/李代数理论:

       基于李群/李代数的参数化需要对相关数学理论有扎实的理解,这对于初学者来说可能是一个门槛。

    • 雅可比矩阵的正确推导和实现:

       meskipun 通用公式存在,但在具体的 PGO 实现中,正确推导和实现误差函数关于新参数化增量的雅可比矩阵仍然需要细心和精确。

    • 库支持和工程实现:

       一些新的参数化方法可能没有现成的成熟库支持,需要自行实现相关的数学运算和优化框架,增加了工程实现的难度。

    • 计算效率权衡:

       某些新的参数化方法虽然在理论上更优雅,但在实际计算中可能引入额外的计算开销,需要权衡其带来的优势和计算成本。

    五、结论与未来展望

    三维位姿图优化是 SLAM 领域的核心问题,而高斯-牛顿方法是解决这类问题的常用手段。为了克服传统位姿参数化的局限性,研究人员积极探索新的参数化方法。基于李代数切空间的参数化、使用流形上的指数映射进行参数化以及基于扰动模型的雅可比推导,都为在高斯-牛顿框架下更有效地优化三维位姿提供了新的思路。这些新参数化方法能够更好地利用李群/李代数的结构,避免奇异性问题,提高优化的鲁棒性和效率。

    未来的研究方向可以包括:

    • 更高效的雅可比矩阵计算:

       虽然有通用的雅可比公式,但探索更高效的计算方法,尤其是利用稀疏性和并行计算,仍然具有重要意义。

    • 结合机器学习的参数化或优化:

       将机器学习技术与李群/李代数理论相结合,学习更优的位姿表示或优化策略。

    • 探索其他描述刚体运动的数学工具:

       深入研究对偶四元数、螺旋理论等,将其应用于 PGO 中,探索潜在的优势。

    • 在复杂环境下验证新参数化的性能:

       在不同类型的传感器数据、不同规模的位姿图和不同噪声水平下,全面评估新参数化的性能。

    • 开发用户友好的库和工具:

       推广和应用新参数化方法需要易于使用的库和工具,降低学习和实现的门槛。

    ⛳️ 运行结果

    🔗 参考文献

    [1] 简单,魏国亮,蔡洁,等.基于嵌套剖分的位姿图分层优化算法[J].计算机应用研究, 2024, 41(6):1916-1920.DOI:10.19734/j.issn.1001-3695.2023.08.0386.

    [2] 王苗苗,魏国亮,蔡洁,等.针对大噪声的三维SLAM位姿图鲁棒优化算法[J].控制工程, 2024, 31(7):1305-1313.

    [3] 李雨洁,魏国亮,蔡洁,等.基于特征分解的快速位姿图优化算法[J].计算机应用研究, 2022(010):039.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇 

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值