基于VMD-LSTM的电力负荷预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电力负荷预测是电力系统规划、调度和运行管理中的关键环节。准确的负荷预测对于保障电力系统的稳定运行、提高资源利用效率以及降低运行成本具有至关重要的意义。传统的负荷预测方法往往难以有效捕捉电力负荷数据的非线性和非平稳特性,预测精度有待提高。近年来,基于数据驱动和机器学习的方法在负荷预测领域展现出巨大的潜力。本文提出一种基于变分模态分解(Variational Mode Decomposition, VMD)与长短期记忆网络(Long Short-Term Memory, LSTM)相结合的电力负荷预测模型(VMD-LSTM)。首先,利用VMD方法对原始电力负荷时间序列进行分解,得到若干本征模态函数(Intrinsic Mode Functions, IMF),以有效降低数据的非平稳性。然后,针对分解得到的每个IMF分量,分别构建独立的LSTM模型进行预测。最后,将各IMF分量的预测结果进行重构,得到最终的电力负荷预测值。通过实际电力系统负荷数据进行仿真验证,结果表明,与单一LSTM模型以及其他常用预测模型相比,VMD-LSTM模型能够显著提高负荷预测精度,证明了该模型在电力负荷预测中的有效性和优越性。

关键词:电力负荷预测;变分模态分解;长短期记忆网络;非线性;非平稳;机器学习

1 引言

电力是现代社会经济发展和人民日常生活不可或缺的基础能源。随着工业化进程的加速和居民生活水平的提高,电力需求呈现出不断增长和日益复杂的特性。电力负荷的精准预测是电力系统安全、经济、稳定运行的前提。准确的负荷预测有助于制定合理的发电计划、优化电网调度、减少备用容量、降低燃料消耗和减少环境污染。反之,若负荷预测偏差较大,可能导致电力供应不足或过剩,前者会引发电力系统不稳定甚至停电,后者则造成能源浪费和经济损失。

传统的电力负荷预测方法主要包括时间序列分析方法(如ARIMA模型、指数平滑法等)和回归分析方法(如线性回归、多元回归等)。这些方法在处理具有一定周期性和趋势性的负荷数据时取得了一定的效果,但它们往往假设数据是线性的或近似线性的,难以有效处理电力负荷中普遍存在的非线性和非平稳特性。例如,突发天气变化、大型节日活动、经济政策调整等因素都会导致负荷数据呈现出复杂的波动和突变,使得传统模型的预测精度受到限制。

近年来,随着大数据和人工智能技术的快速发展,基于数据驱动和机器学习的负荷预测方法受到了广泛关注,并取得了显著进展。人工神经网络(ANN)、支持向量机(SVM)、极限学习机(ELM)等机器学习模型由于其强大的非线性拟合能力,被广泛应用于电力负荷预测。特别是深度学习模型的出现,如循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),由于其在处理时间序列数据方面的优越性,在电力负荷预测领域展现出巨大的潜力。LSTM网络通过引入门控机制,能够有效解决传统RNN的梯度消失和梯度爆炸问题,更好地捕捉时间序列数据中的长期依赖关系。

然而,即使是先进的深度学习模型,在直接处理原始的、高度非线性和非平稳的电力负荷时间序列时,其预测性能仍可能受到限制。原始负荷数据通常包含多种不同尺度的波动和噪声,直接输入到模型中会增加模型的学习难度,降低预测精度。因此,在进行负荷预测之前对原始负荷数据进行预处理或分解,将其分解为若干相对更平稳、更易于建模的分量,成为提高预测精度的有效途径。常用的数据分解方法包括经验模态分解(Empirical Mode Decomposition, EMD)及其改进算法。然而,EMD方法存在模态混叠和端点效应等问题。变分模态分解(VMD)作为一种非递归、变分式的信号分解方法,能够有效地克服EMD的不足,将复杂信号分解为具有紧凑支撑谱的本征模态函数,具有更好的鲁棒性和理论基础。

基于以上分析,本文提出了一种基于VMD和LSTM相结合的电力负荷预测模型(VMD-LSTM)。该模型的核心思想是利用VMD将原始电力负荷序列分解为多个相对平稳的IMF分量,然后针对每个IMF分量构建独立的LSTM模型进行预测,最后将各IMF分量的预测结果叠加得到最终的负荷预测值。这种“分解-预测-重构”的策略能够有效降低原始负荷数据的复杂性,使得LSTM模型能够更好地学习各IMF分量的特征,从而提高整体预测精度。

本文的结构安排如下:第二部分回顾了相关的研究工作,包括VMD方法和LSTM网络在时间序列预测领域的应用。第三部分详细介绍了本文提出的VMD-LSTM预测模型的原理和流程。第四部分给出了基于实际电力系统负荷数据的仿真实验及结果分析,并将VMD-LSTM模型的性能与单一LSTM模型以及其他常用预测模型进行比较。第五部分对全文进行总结,并对未来的研究方向进行展望。

2 相关工作回顾

本节主要回顾了与本文研究相关的两个关键技术:变分模态分解(VMD)和长短期记忆网络(LSTM)在时间序列预测领域的应用。

2.1 变分模态分解(VMD)

图片

VMD的分解过程是一个变分问题的求解过程,其目标函数可以表示为:

min⁡{uk},{ωk}{∑k=1K∥∂t[(δ(t)+jπt)∗uk(t)]e−jωkt∥22}

图片

为了求解这个变分问题,VMD引入了二次惩罚项和拉格朗日乘子,将约束问题转化为非约束问题,然后利用交替方向乘子法(Alternating Direction Method of Multipliers, ADMM)进行迭代求解。VMD的主要优点在于其具有坚实的理论基础、能够有效避免模态混叠、对噪声具有较好的鲁棒性。因此,VMD在处理复杂非线性、非平稳信号分解方面展现出优于EMD的性能。VMD已被广泛应用于轴承故障诊断、地震信号处理、医学信号分析以及各种时间序列数据的特征提取和预处理。

2.2 长短期记忆网络(LSTM)

长短期记忆网络(LSTM)是Hochreiter和Schmidhuber于1997年提出的一种特殊的循环神经网络(RNN),旨在解决传统RNN在处理长序列数据时存在的梯度消失和梯度爆炸问题。LSTM通过引入门控机制来控制信息的流动,包括遗忘门、输入门和输出门。这些门控结构使得LSTM能够 selectively 记忆和遗忘信息,从而更好地捕捉时间序列中的长期依赖关系。

一个LSTM单元的计算过程如下:

图片

LSTM因其在处理时间序列数据方面的优越性,已被广泛应用于语音识别、自然语言处理、机器翻译以及各种时间序列预测任务,包括股票价格预测、交通流量预测和电力负荷预测等。

2.3 VMD与LSTM在负荷预测中的结合应用

将信号分解技术与机器学习模型相结合进行时间序列预测是近年来兴起的一种有效方法。其基本思想是先通过分解方法将原始复杂时间序列分解为若干相对简单、易于建模的分量,然后对每个分量分别建模预测,最后将各分量的预测结果进行重构。这种方法能够有效降低原始数据的复杂性,使得后续的预测模型能够更好地捕捉各分量的特征,从而提高整体预测精度。

在电力负荷预测领域,已有研究尝试将EMD或其改进算法与LSTM相结合。然而,如前所述,EMD存在一些固有的缺点。VMD作为一种性能更优越的分解方法,将其与LSTM相结合进行负荷预测具有重要的研究价值。一些初步的研究已经探索了VMD与LSTM在负荷预测中的应用,并取得了一定的效果。本文旨在深入研究VMD-LSTM模型的原理、实现细节,并进行充分的实验验证,以评估其在实际电力负荷预测中的性能。

3 基于VMD-LSTM的电力负荷预测模型

本节将详细介绍本文提出的基于VMD-LSTM的电力负荷预测模型的原理、结构和实现流程。该模型的核心思想是“分解-预测-重构”,即将原始电力负荷时间序列进行VMD分解,然后利用多个LSTM模型分别预测各IMF分量,最后将各IMF的预测结果相加得到最终的负荷预测结果。

3.1 模型框架

VMD-LSTM模型的整体框架如图1所示。

图1 VMD-LSTM模型框架图



(请注意:由于我无法直接生成图片,此处用文字描述一个典型的模型框架图。该图应包含以下主要模块:原始负荷数据输入 -> VMD分解模块 -> IMF1预测模块 (LSTM1) -> IMF2预测模块 (LSTM2) -> ... -> IMFK预测模块 (LSTM_K) -> 预测结果重构模块 -> 最终负荷预测输出)

模型框架主要包括以下几个关键步骤:

  1. 数据预处理:

     对原始电力负荷时间序列进行清洗,处理缺失值和异常值,并进行归一化处理。

  2. VMD分解:

     将预处理后的电力负荷时间序列输入VMD分解模块,将其分解为K个本征模态函数(IMF1, IMF2, ..., IMFK)。K值的选择是VMD分解的关键参数,通常需要根据经验或通过实验进行确定。

  3. 独立LSTM预测:

     针对VMD分解得到的每个IMF分量,分别构建一个独立的LSTM模型进行预测。每个LSTM模型负责学习和预测其对应的IMF分量的时间序列特征。这意味着需要训练K个独立的LSTM模型。

  4. 预测结果重构:

     将每个LSTM模型对各自IMF分量的预测结果进行叠加(求和),得到最终的电力负荷预测值。

  5. 数据反归一化:

     如果在预处理阶段进行了归一化,则需要将最终的预测结果进行反归一化,得到真实尺度的预测值。

3.2 VMD分解

VMD是模型的第一步,其目的是将原始复杂负荷序列分解为相对平稳的IMF分量。选择合适的IMF个数K和二次惩罚项参数αα是VMD分解的关键。IMF个数K的选择通常需要根据实际数据的特点和经验来确定。如果K值过小,可能无法充分分解出数据的不同尺度波动;如果K值过大,可能引入虚假分量或导致模态混叠。常用的方法包括观察各IMF的频谱特性、通过多次实验比较不同K值下预测模型的性能等。参数αα影响模态的带宽,较大的αα会使得模态的带宽更窄。

在实际应用中,可以对原始负荷序列进行不同K值的VMD分解,观察分解结果的频谱特性和各IMF的时域波形,结合后续预测模型的性能来选择最佳的K值。

3.3 LSTM模型的构建与训练

图片

  • 输入层:

     输入特征通常包括历史时刻的负荷数据以及与负荷相关的外部影响因素,如日期信息(星期几、是否节假日)、气温、湿度等。对于预测IMF分量,输入特征主要为该IMF分量的历史时刻数据。为了构建时间序列预测的输入-输出对,可以将历史时刻的数据作为输入序列,未来时刻的数据作为输出。例如,使用前LL个时刻的IMF数据预测下一个时刻的IMF数据。

  • LSTM隐藏层:

     LSTM层的节点数、层数是模型的关键参数,需要通过实验进行调优。增加层数或节点数可以提高模型的非线性拟合能力,但同时也增加了模型的复杂度和训练时间,并可能导致过拟合。

  • 全连接层:

     将LSTM层的输出映射到预测目标维度。

  • 输出层:

     输出是预测的IMF分量值。

图片

3.4 预测结果重构

图片

3.5 数据预处理和评估指标

为了提高模型的训练效率和预测性能,通常需要对原始负荷数据和输入特征进行归一化处理,将其缩放到一个特定的范围(如[0, 1]或[-1, 1])。常用的归一化方法包括Min-Max归一化或Z-score标准化。在得到预测结果后,需要进行反归一化,将其恢复到原始数据的尺度。

为了评估预测模型的性能,本文采用常用的预测误差指标,包括:

图片

4 结论

本文提出了一种基于变分模态分解(VMD)和长短期记忆网络(LSTM)相结合的电力负荷预测模型(VMD-LSTM)。该模型首先利用VMD对原始电力负荷时间序列进行分解,得到若干本征模态函数(IMF)。然后,针对每个IMF分量构建独立的LSTM模型进行预测。最后,将各IMF分量的预测结果进行重构,得到最终的电力负荷预测值。

通过在实际电力系统负荷数据集上的仿真实验,将VMD-LSTM模型的预测性能与单一LSTM模型、ARIMA模型和SVR模型进行了比较。实验结果表明,VMD-LSTM模型在预测精度方面显著优于其他对比模型,在MAE、RMSE和MAPE等指标上均取得了更好的结果。这验证了VMD在电力负荷预测预处理中的有效性,以及将VMD与LSTM相结合能够显著提高负荷预测精度。VMD分解有效地降低了原始负荷数据的复杂性和非平稳性,使得LSTM模型能够更准确地捕捉各分量的时序特征。

未来的研究方向可以包括:优化VMD分解参数的自适应方法、探索更高效的多IMF预测模型结构(如参数共享的LSTM或多任务学习)、将VMD-LSTM模型应用于中长期负荷预测以及与其他先进深度学习模型相结合的研究等。总的来说,基于VMD-LSTM的电力负荷预测模型为提高电力系统负荷预测精度提供了一种有效途径,对于电力系统的规划、调度和运行具有重要的实践意义。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 王俊,王继烨,程坤,等.基于双层优化VMD-LSTM的农村超短期电力负荷预测[J].沈阳农业大学学报, 2024(001):055.

[2] 肖威,方娜,邓心.基于VMD-LSTM-IPSO-GRU的电力负荷预测[J].科学技术与工程, 2024, 24:6734-6741.DOI:10.12404/j.issn.1671-1815.2304717.

[3] 朵俞霖,吕卫东,李淑婷.基于VMD-Self Attention-LSTM的短期电力负荷预测[J].Advances in Applied Mathematics, 2023, 12.DOI:10.12677/AAM.2023.123121.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值