使用连续动作空间深度强化学习的算法研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

近年来,深度强化学习(DRL)在处理复杂决策任务方面取得了显著进展,尤其是在atari游戏、围棋等离散动作空间领域。然而,现实世界中的许多问题,如机器人控制、自动驾驶、金融交易等,其决策空间往往是连续的。传统的基于离散动作空间的DRL方法难以直接应用于这些领域,或需要进行离散化处理,但这可能导致精度损失和维度灾难。因此,针对连续动作空间的DRL算法研究变得尤为重要。本文旨在深入探讨使用连续动作空间深度强化学习的算法研究,对当前主流的连续动作空间DRL算法进行梳理和分析,并展望未来的研究方向。

引言

强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,其核心思想是通过智能体与环境的交互,学习如何在特定状态下采取最优动作以最大化长期累积奖励。早期的RL算法主要关注离散动作空间,如基于表格的Q学习和SARSA算法。随着深度学习技术的发展,深度强化学习应运而生,通过神经网络近似值函数或策略函数,使得RL能够处理高维状态空间。典型的基于离散动作空间的DRL算法包括深度Q网络(DQN)及其变体。

然而,当动作空间是连续的时,直接应用离散动作空间的DRL算法面临挑战。例如,在机器人控制中,机器人的关节角度或末端执行器速度是连续的;在自动驾驶中,车辆的转向角度和油门刹车力度是连续的。将连续动作空间离散化会带来以下问题:1. 离散粒度的选择困难,过粗的离散化会导致精度损失和次优策略,过细的离散化会导致动作空间维度爆炸,增加计算复杂度。2. 离散化后的动作空间无法捕捉到连续动作的细微变化。因此,研究能够直接处理连续动作空间的DRL算法具有重要的理论和实践意义。

连续动作空间深度强化学习算法分类

目前,连续动作空间的DRL算法主要可以分为以下几类:

图片

    图片

    图片

    关键技术和挑战

    连续动作空间DRL算法的研究涉及到许多关键技术和挑战:

    1. 连续动作的表示和输出: 如何通过神经网络有效地表示和输出连续动作是一个核心问题。常用的方法包括:

      • 高斯分布:

         输出动作的均值和标准差,从高斯分布中采样得到动作(基于策略梯度的算法)。

      • 确定性输出:

         直接输出动作值(基于确定性策略的算法)。

      • Beta分布或截断正态分布:

         确保动作在特定范围内。

    2. 策略评估和改进: 如何准确评估连续策略的价值,并有效地进行策略改进。Actor-Critic框架通过Critic网络估计价值,然后利用价值信息指导Actor网络更新策略。确定性策略梯度利用链式法则计算确定性策略的梯度。

    3. 探索与利用 (Exploration vs. Exploitation): 在连续动作空间中,探索是一个更具挑战性的问题。随机采样的方法可能效率低下,需要设计更有效的探索策略。一些算法通过在确定性策略输出中添加噪声进行探索,或者利用最大熵原则鼓励探索。

    4. 训练稳定性: 连续动作空间的DRL算法训练往往不够稳定,容易出现梯度爆炸、震荡等问题。经验回放、目标网络、批标准化、梯度裁剪等技术被广泛应用于提高训练稳定性。

    5. 样本效率: 许多连续动作空间的DRL算法需要大量的样本数据进行训练,尤其是在复杂环境中。离线强化学习、模型基强化学习、迁移学习等技术有望提高样本效率。

    6. 高维连续动作空间: 当连续动作空间的维度很高时,算法的复杂性和训练难度会显著增加。需要研究能够处理高维连续动作空间的算法,例如基于分解的算法或利用领域知识的算法。

    算法分析与比较

    不同的连续动作空间DRL算法各有优劣:

    • 基于策略梯度的算法:

       理论上更具探索性,能够学习随机策略,适用于需要随机性或多模态最优策略的任务。但方差较高,训练不稳定。

    • 基于确定性策略的算法:

       样本效率相对较高,训练相对稳定,适用于确定性最优策略的任务。但在探索方面可能不足,容易陷入局部最优。

    • 基于最大熵的算法:

       在探索和稳定性方面表现出色,能够学习更鲁棒的策略。计算复杂度可能略高。

    在实际应用中,选择哪种算法取决于具体的任务特点、环境复杂度和对性能的要求。通常需要根据实际情况进行实验比较和调优。

    应用领域

    连续动作空间的DRL算法在众多领域具有广阔的应用前景:

    • 机器人控制:

       机器人手臂控制、移动机器人导航、无人机控制等。

    • 自动驾驶:

       车辆转向、油门、刹车控制,路径规划等。

    • 金融交易:

       股票、期货等连续资产的交易策略制定。

    • 游戏开发:

       角色控制、物理引擎交互等。

    • 工业控制:

       流程优化、设备控制等。

    • 生物医药:

       药物剂量控制、治疗方案优化等。

    未来的研究方向

    尽管连续动作空间的DRL算法已经取得了显著进展,但仍然存在许多待解决的问题和未来的研究方向:

    1. 提高样本效率:

       进一步研究离线强化学习、模型基强化学习、数据增强、知识蒸馏等技术,减少对大量在线交互数据的依赖。

    2. 提升训练稳定性与鲁棒性:

       探索新的网络结构、优化器、正则化方法等,提高算法在复杂环境下的训练稳定性和抗干扰能力。

    3. 处理高维连续动作空间:

       研究能够有效处理高维连续动作空间的算法,例如利用神经网络结构进行动作空间的分解或利用领域知识进行动作空间的约束。

    4. 多智能体连续控制:

       进一步研究适用于多智能体协作或竞争环境下的连续动作空间DRL算法。

    5. 可解释性与安全性:

       提高连续动作空间DRL算法的可解释性,理解策略的学习过程,并确保学习到的策略在实际应用中的安全性。

    6. 与模仿学习、迁移学习等技术的结合:

       将连续动作空间的DRL算法与模仿学习、迁移学习等技术相结合,利用人类专家的经验或从已有任务中迁移知识,加速学习过程。

    7. 奖励函数设计与塑形:

       在连续控制任务中,设计有效的奖励函数往往具有挑战性。研究自动奖励函数设计或奖励塑形技术,能够提高算法的学习效率和性能。

    结论

    连续动作空间的深度强化学习是DRL领域一个充满挑战和机遇的重要研究方向。本文对当前主流的连续动作空间DRL算法进行了梳理和分析,包括基于策略梯度、基于确定性策略、基于最大熵等方法。同时,探讨了该领域面临的关键技术和挑战,并展望了未来的研究方向。随着算法的不断发展和计算能力的提升,连续动作空间的DRL将在更多实际应用中发挥重要作用,推动人工智能技术在复杂决策领域的进一步发展。未来的研究应着重于提高算法的样本效率、训练稳定性、鲁棒性和处理高维连续动作空间的能力,并探索与其他机器学习技术的结合,以应对现实世界中更加复杂和具有挑战性的连续控制任务。

    ⛳️ 运行结果

    图片

    图片

    图片

    🔗 参考文献

    [1] 王迎.城市交通信号控制深度强化学习算法研究[D].山东交通学院,2024.

    [2] 申阳.基于双层深度强化学习的汽车运行轨迹与节能优化[D].山东交通学院,2023.

    [3] 游世勋.基于深度强化学习的UCAV决策方法研究[D].哈尔滨工程大学,2020.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇 

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值