【SCI复现】电力系统储能调峰、调频模型研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的转型和可再生能源的大规模并网,电力系统的波动性日益增强。风电、光伏等间歇性电源的随机性和不确定性给电网的稳定运行带来了严峻挑战。传统的火力发电等调节能力有限的电源难以有效地应对这些波动,亟需寻求更灵活、响应更快的调节手段。储能技术作为一种关键的灵活性资源,因其快速响应、双向调节和能量时移能力,在电力系统调峰、调频中展现出巨大的应用潜力。将储能系统有效地集成到电力系统中,并设计科学合理的运行策略,对于提升电网的稳定性和经济性具有至关重要的意义。

本文旨在对电力系统储能调峰、调频模型进行深入研究,特别是基于科学引文索引(SCI)期刊上发表的前沿研究成果,对相关模型的原理、构建方法、优化目标以及求解策略进行系统性的梳理和分析。通过复现和借鉴这些高水平的研究成果,以期为我国电力系统储能应用模型的进一步发展提供理论基础和实践指导。

储能系统在电力系统调峰、调频中的作用机理

1. 储能系统在调峰中的作用:

调峰是电力系统为满足负荷需求变化而进行发电出力调整的过程。随着负荷的变化,系统需要快速地增加或减少发电出力,以维持供需平衡。储能系统在调峰中的作用主要体现在以下几个方面:

  • 削峰填谷:

     在用电低谷时段,系统富余的电力可以存储到储能装置中;在用电高峰时段,储能装置可以释放能量,减少高峰时段的发电需求,从而平抑负荷曲线,降低峰谷差。

  • 延缓电源建设:

     通过有效利用储能系统进行调峰,可以减少对新增调峰电源(如燃气轮机)的需求,降低电网投资成本。

  • 提高可再生能源消纳能力:

     在可再生能源出力过剩时段,可以将多余的电能存储起来,避免弃风弃光,并在负荷高峰时段释放,提高可再生能源的利用效率。

2. 储能系统在调频中的作用:

调频是电力系统为维持系统频率稳定而进行的发电出力调整的过程。当电力系统发生不平衡(发电量不等于用电量)时,系统频率会发生变化。储能系统在调频中的作用主要体现在以下几个方面:

  • 一次调频:

     当系统频率偏离设定值时,储能系统可以快速地改变充放电功率,通过自动控制机制响应频率变化,提供惯性和调节能力,抑制频率偏差。

  • 二次调频:

     在一次调频的基础上,储能系统可以根据频率偏差和频率变化率信号,进行更为精细的功率调节,将系统频率恢复到设定值。

  • 抑制振荡:

     通过对系统频率、电压等信号的实时监测和控制,储能系统可以参与抑制电力系统低频振荡,提高系统的稳定性。

SCI文献中储能调峰、调频模型的研究现状

基于SCI期刊上的研究成果,储能调峰、调频模型的研究主要集中在以下几个方面:

1. 储能系统建模:

构建准确的储能系统模型是进行调峰、调频策略研究的基础。SCI文献中常见的储能系统模型主要包括:

  • 电化学模型:

     如锂离子电池、液流电池等,考虑电池内部化学反应、热效应、老化等因素,模型精度较高,但计算复杂度大。

  • 电气模型:

     将储能系统建模为受控电流源或电压源,考虑其充放电效率、容量、最大功率等约束,模型相对简单,适用于系统级仿真。

  • 等效电路模型:

     利用电阻、电容、电压源等电路元件模拟储能系统的充放电特性,模型兼顾精度和计算效率。

  • 能量模型:

     关注储能系统的能量状态(State of Charge, SOC)变化,考虑充放电效率和能量损失,模型适用于长时间尺度的能量管理。

这些模型在SCI文献中被广泛应用于不同的研究场景,模型的选择取决于研究的精细程度和计算资源。例如,在进行详细的电池性能分析时,往往采用电化学模型;而在进行大规模电力系统运行优化时,则倾向于采用电气模型或能量模型。

2. 储能调峰模型:

SCI文献中储能调峰模型的研究主要聚焦于优化储能系统的充放电调度策略,以实现最优的调峰效果。常见的调峰模型构建方法包括:

  • 基于优化的调度模型:

     运用数学规划方法,如线性规划(LP)、二次规划(QP)、混合整数线性规划(MILP)、动态规划(DP)等,以最小化系统运行成本、最小化碳排放、最大化可再生能源消纳等为目标,优化储能系统的充放电功率和持续时间。这些模型通常考虑负荷预测、可再生能源出力预测、电价信息、储能系统自身约束(容量、功率、SOC等)以及电网运行约束(潮流、电压等)。

  • 基于规则的控制策略:

     基于预设的规则和阈值,根据当前的系统状态(如电价、负荷、可再生能源出力、储能SOC等)决定储能系统的充放电行为。这种方法实现简单,但可能无法达到最优效果。

  • 基于机器学习的预测和调度模型:

     利用机器学习算法预测负荷、可再生能源出力等信息,并基于预测结果制定储能调度策略。

  • 考虑不确定性的随机优化或鲁棒优化模型:

     考虑到负荷预测和可再生能源出力预测的误差,采用随机优化或鲁棒优化方法来提高调度策略的鲁棒性。

SCI文献中,很多研究将储能调峰模型与其它灵活性资源(如需求侧响应、燃气轮机等)的调度相结合,构建多源协同优化模型,以提升整体系统的灵活性。

3. 储能调频模型:

SCI文献中储能调频模型的研究主要关注储能系统对系统频率的快速响应和调节能力。常见的调频模型构建方法包括:

  • 基于PID控制器的模型:

     利用经典的比例-积分-微分(PID)控制器,根据系统频率偏差信号,生成储能系统的充放电功率指令。

  • 基于模型预测控制(MPC)的模型:

     构建系统动力学模型,并利用MPC方法,在滚动时域内对储能系统的充放电功率进行优化,以预测并抑制频率偏差。

  • 基于虚拟同步发电机(VSG)技术的模型:

     将储能系统模拟成具有惯性和阻尼特性的同步发电机,使其具备参与电网频率动态响应的能力。

  • 基于机器学习或深度学习的控制策略:

     利用机器学习算法学习历史频率数据和控制策略,实现更智能和自适应的调频控制。

  • 考虑储能系统自身动态特性的详细模型:

     考虑储能系统内部功率变换器、电池单元等的动态特性,构建更为精细的调频控制模型。

SCI文献中,很多研究深入探讨了储能系统在不同时间尺度的调频作用,包括惯性响应、一次调频和二次调频,并研究了储能系统与传统发电机组、同步补偿器等设备的协同调频策略。

4. 储能调峰、调频协同优化模型:

储能系统同时具备调峰和调频的能力,然而这两种功能在时间和功率需求上可能存在冲突。例如,在调峰时段,储能系统可能需要长时间持续放电,而在调频时段,则需要快速频繁地改变功率。因此,如何有效地协同储能系统的调峰和调频功能,是当前研究的热点。SCI文献中常见的协同优化方法包括:

  • 分时段调度模型:

     将一天划分为不同的时段,在不同的时段赋予储能系统不同的功能优先级,例如在高峰时段以调峰为主,在频率波动较大时以调频为主。

  • 多目标优化模型:

     将调峰效益(如运行成本降低)和调频效益(如频率偏差抑制)作为多个优化目标,构建多目标优化模型,寻求在不同目标之间权衡的最优解。

  • 基于分层控制的协同策略:

     将调峰和调频控制分为不同的层级,上层负责长时间尺度的调峰调度,下层负责短时间尺度的调频控制,并通过信息交互实现协同。

  • 基于动态规划或强化学习的协同策略:

     利用动态规划或强化学习方法,在考虑两种功能交互影响的情况下,制定动态的充放电策略,实现调峰和调频的协同优化。

SCI文献中,协同优化模型的研究越来越受到重视,旨在充分挖掘储能系统的多种功能价值,提高系统的整体效益。

模型构建和求解的挑战与方法

在构建和求解上述储能调峰、调频模型时,面临着诸多挑战:

  • 模型复杂度和非线性:

     考虑到储能系统的非线性特性、电网运行约束以及多时间尺度耦合,模型往往具有较高的复杂度和非线性,难以直接求解。

  • 不确定性:

     可再生能源出力和负荷预测存在不确定性,对模型的求解和策略的鲁棒性提出了挑战。

  • 大规模问题:

     随着储能系统和电网规模的扩大,模型变量和约束数量急剧增加,对求解算法的效率提出了更高要求。

  • 多目标冲突:

     调峰和调频功能可能存在冲突,如何平衡不同目标是关键问题。

为了解决这些挑战,SCI文献中采用了多种求解方法:

  • 优化算法:

     对于线性、二次或混合整数规划模型,可以采用CPLEX、Gurobi等商业优化求解器;对于非线性模型,可以采用内点法、序列二次规划(SQP)等非线性优化算法;对于大规模问题,可以采用分解协调算法、列生成算法等。

  • 启发式和元启发式算法:

     对于难以用数学规划直接求解的问题,可以采用遗传算法(GA)、粒子群优化(PSO)、模拟退火(SA)等启发式和元启发式算法。

  • 仿真方法:

     构建电力系统仿真模型,模拟储能系统的运行行为,评估不同策略的效果。

  • 机器学习和深度学习方法:

     利用机器学习算法进行预测、分类或直接学习最优控制策略。

  • 鲁棒优化和随机优化方法:

     用于处理模型中的不确定性。

SCI文献复现与研究展望

对SCI文献中储能调峰、调频模型进行复现,不仅是理解前沿研究成果的重要途径,更是进行创新性研究的基础。复现过程中,需要深入理解论文中的模型假设、数学公式、求解算法以及仿真设置,并尝试在不同的仿真平台(如Matlab/Simulink, Python, GAMS等)上实现。复现的意义在于:

  • 验证研究成果的有效性:

     通过复现,可以检验论文中提出的模型和方法是否能够得到预期的结果,从而验证其有效性。

  • 深入理解模型原理和局限性:

     在复现过程中,会遇到各种技术细节和问题,这有助于更深入地理解模型的内在原理和潜在的局限性。

  • 为后续研究奠定基础:

     在复现的基础上,可以进一步进行模型的改进、扩展或与其他技术相结合,开展新的研究。

未来的研究方向可以重点关注:

  • 考虑更复杂的储能系统模型:

     深入研究不同类型储能技术的特性,构建更符合实际运行情况的精细化模型,包括电池的容量衰减、热管理等。

  • 多类型储能系统的协同优化:

     研究不同类型储能(如电池储能、抽水蓄能、压缩空气储能等)之间的协同调峰、调频策略,充分发挥各自优势。

  • 考虑电网动态特性的精细化调频控制:

     将储能系统与电网的动态模型更紧密地结合,研究在复杂电网环境下储能系统的调频控制策略。

  • 基于人工智能的自适应和预测控制:

     利用强化学习、深度学习等技术,开发能够根据实时系统状态和预测信息进行自适应调度的储能系统,提高其智能化水平。

  • 考虑市场机制和政策环境的储能优化调度:

     研究在不同电力市场机制(如现货市场、辅助服务市场)和政策环境下,储能系统的最优运行策略。

  • 储能系统全生命周期的经济性评估和优化:

     考虑储能系统的投资成本、运行维护成本、容量衰减等因素,进行全生命周期的经济性评估,并优化其调度策略以最大化经济效益。

  • 储能系统在复杂故障和极端事件下的应对能力:

     研究储能系统在电网故障、自然灾害等极端事件下的运行表现和应对策略,提高系统的韧性。

结论

储能系统在电力系统调峰、调频中发挥着越来越重要的作用。基于SCI期刊的研究成果,储能调峰、调频模型的研究已经取得了显著进展,涵盖了从储能系统建模、单功能优化到多功能协同优化的各个层面。本文对这些模型的研究现状进行了系统性梳理,并分析了模型构建和求解面临的挑战与方法。通过对SCI文献的复现和深入研究,可以进一步理解现有模型的优势和不足,为未来的创新性研究奠定基础。随着电力系统向高比例可再生能源转型,储能技术的应用前景广阔,未来的研究应更加关注模型的精细化、智能化和协同化,以更好地支撑新型电力系统的稳定、经济和可持续运行。深入挖掘储能系统的多元价值,是构建未来坚强智能电网的关键一环。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 韩邦成.单轴飞轮储能/姿态控制系统的仿真及其实验研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2004.DOI:http://159.226.165.120//handle/181722/2039.

[2] 李军军,吴政球.微型燃气轮机分布式发电系统的建模和仿真[J].湖南大学学报:自然科学版, 2010, 37(10):6.DOI:CNKI:SUN:HNDX.0.2010-10-012.

[3] 刘嫣.基于小波的电缆在线故障定位研究[D].西安科技大学,2007.DOI:10.7666/d.y1030606.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值