【改进粒子群优化算法】基于惯性权重和学习因子动态调整的粒子群算法【期刊论文复现】附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在当今复杂多变的世界中,优化问题无处不在,从工程设计到经济管理,从机器学习到生物信息学,有效的优化算法是解决这些问题的关键。粒子群优化(Particle Swarm Optimization, PSO)算法,作为一种基于群体智能的启发式搜索算法,以其实现简单、收敛速度快以及对高维复杂问题有较好适应性等优点,在众多领域取得了广泛应用。然而,传统的PSO算法也存在一些固有的缺陷,例如容易陷入局部最优、后期收敛速度慢以及对参数敏感等问题。为了克服这些不足,【改进粒子群优化算法】成为了研究的热点,其中“基于惯性权重和学习因子动态调整的粒子群算法”作为一种行之有效的方法,受到了学术界的广泛关注和深入研究。本文旨在对这种改进型PSO算法进行深入探讨,剖析其核心思想、理论基础、优势及其在实际应用中的潜力。

一、粒子群优化算法的原理回顾

在深入探讨改进型PSO算法之前,有必要简要回顾标准粒子群优化算法的基本原理。PSO算法灵感来源于鸟群捕食行为的社会模型,将待求解问题的解空间视为一个N维空间,每个“粒子”都代表该空间中的一个潜在解。每个粒子都具有两个关键属性:位置和速度。在搜索过程中,粒子根据自身在搜索历史中找到的最佳位置(个体最优,pbest)以及整个种群中所有粒子找到的最佳位置(全局最优,gbest)来更新其速度和位置。

图片

二、基于惯性权重动态调整的改进

在标准PSO算法中,惯性权重ωω是一个关键参数,它平衡了算法的全局搜索(探索)能力和局部搜索(开发)能力。较大的ωω有助于粒子跳出局部最优,进行更广泛的搜索;而较小的ωω则有利于粒子在当前最优解附近进行精细搜索,加速收敛。固定ωω值通常难以在整个优化过程中同时满足探索和开发的需求。

为了解决这一问题,研究者们提出了多种惯性权重动态调整策略,其中最常用和有效的是线性递减惯性权重(Linear Decreasing Inertia Weight, LDIW)策略。其基本思想是,在优化初期,赋予较大的惯性权重,以增强算法的全局搜索能力,防止过早收敛到局部最优;而在优化后期,逐渐减小惯性权重,使粒子更专注于局部搜索,加速收敛到全局最优解。

线性递减惯性权重公式通常表示为:

图片

ω(t)=ωmax−(ωmax−ωmin)tTmax

这种动态调整策略显著提升了PSO算法的性能。在优化初期,较大的ωω使得粒子能够以更大的步长探索解空间,避免陷入局部最优。随着迭代次数的增加,ωω逐渐减小,粒子逐渐失去随机游走的能力,转而更加依赖自身历史最优和群体历史最优的信息,从而在最优解附近进行精确搜索,提高收敛精度。

除了线性递减,还有非线性递减、自适应调整等多种惯性权重动态调整策略。例如,可以根据粒子的适应度值或者群体的多样性来动态调整ωω,使得算法能够更好地适应不同的优化问题。

三、基于学习因子动态调整的改进

图片

图片

四、惯性权重和学习因子协同动态调整的优势

将惯性权重和学习因子同时进行动态调整,可以实现算法在不同优化阶段对探索和开发能力的更精细化控制,从而进一步提升PSO算法的性能。这种协同调整的优势体现在以下几个方面:

图片

图片

五、实践与复现要点

对于【期刊论文复现】而言,复现“基于惯性权重和学习因子动态调整的粒子群算法”的关键在于精确理解并实现论文中提出的参数动态调整策略。这通常涉及到:

图片

5. 性能评估指标: 通常包括最优解的平均值、标准差、收敛速度等,通过这些指标来量化改进算法的性能提升。

六、结论

“基于惯性权重和学习因子动态调整的粒子群算法”是PSO算法领域中一项重要的改进,它通过在优化过程中动态调整算法的关键参数,有效解决了传统PSO算法容易陷入局部最优、收敛速度慢以及对参数敏感等问题。这种改进使得PSO算法在复杂多模态优化问题中展现出更强大的搜索能力和更高的收敛精度。

随着人工智能和优化理论的不断发展,对PSO算法的改进研究仍在持续。未来的研究方向可能包括:结合其他优化算法的混合策略、引入种群拓扑结构优化、自适应参数调整的智能化以及在多目标、约束优化等复杂问题中的应用。可以预见,基于惯性权重和学习因子动态调整的PSO算法将继续在科研和实际应用中发挥重要作用,为解决各类复杂优化问题提供强有力的工具。

⛳️ 运行结果

图片

🔗 参考文献

[1] 滕志军,吕金玲,郭力文,等.基于动态加速因子的粒子群优化算法研究[J].微电子学与计算机, 2017, 34(12):5.DOI:CNKI:SUN:WXYJ.0.2017-12-026.

[2] 徐生兵.基于动态调整惯性权重下改进学习因子的粒子群算法[J].信息安全与技术, 2014, 5(004):26-28.DOI:10.3969/j.issn.1674-9456.2014.04.007.

[3] 牛赛克,孙丽颖.基于自适应调整惯性权重的改进粒子群优化算法[J].辽宁工业大学学报(自然科学版), 2023, 43(6):400-403.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值