1.选择排序
基本逻辑是:从0开始遍历选出最大值与0位交换,从1开始遍历再次选出最大值与1交换........,下面是代码,使用模板方法实现且增加了如何对自定以类进行排序
#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std;
///选择排序,每次循环选出最大值,依次放到数组的[0][1][2]....中
template <class T>
void selectionSort(T arr[],int size)
{
for(int i=0;i<size;i++)
{
int minIndex = i;
for(int j=i;j<size;j++)
{
if(arr[minIndex]<arr[j])
minIndex = j;
}
swap(arr[i],arr[minIndex]);
}
}
///输出数组
template <typename T>
void printArr(T arr[],int size)
{
cout<<"[";
for(int i=0;i<size;i++)
{
if(i==size-1)
cout<<arr[i];
else
cout<<arr[i]<<",";
}
cout<<"]"<<endl;
}
///自定义类型排序
struct student{
int score;
string name;
bool operator<(student otherStudent)
{
return score!=otherStudent.score ? score<otherStudent.score : name<otherStudent.name;
}
friend ostream& operator<<(ostream& os,student st)
{
os<<"Student "<<st.name<<" "<<"Score"<<st.score<<endl;
return os;
}
};
int _tmain(int argc, _TCHAR* argv[])
{
//整形数组
int arr[10] = {3,5,3,6,5,1,9,8,7,0};
selectionSort(arr,10);
printArr(arr,10);
//double型
double dArr[10] = {3.2,3.4,9.0,8.8,7,3,7,5,9,8.96};
selectionSort(dArr,10);
printArr(dArr,10);
//char型
char cArr[5] = {'D','M','Y','K','T'};
selectionSort(cArr,5);
printArr(cArr,5);
//自定义类型
student students[4] = {{88,"A"},{89,"I"},{97,"K"},{90,"L"}};
selectionSort(students,4);
printArr(students,4);
cin.get();
return 0;
}
2.插入排序
基本逻辑是:从0到n依次取值,每次取值使得arr[i-1] < arr[i],代码实现如下:
template<typename T>
static void insertSort(T arr[],int size)
{
for(int i=1;i<size;i++)
{
for(int j=i;j>0;j--)
{
if(arr[j]<arr[j-1])
swap(arr[j],arr[j-1]);
else
break;
}
}
}
插入排序与选择排序的比较:选择排序对于第二层循环每次都要全部执行一遍,而插入排序可以提前退出,但这并不意味着插入排序的效率优于选择排序,因为选择排序的更多步骤是取值比较,交换操作很少,插入排序频繁的进行交换操作,交换操作更耗费时间。
3.插入排序优化(实用)
基本思想是在插入排序的基础上用赋值减少交换操作,代码实现如下:
template<typename T>
static void insertSortPlus(T arr[],int size)
{
for(int i=1;i<size;i++)
{
T num = arr[i];
int j;
for(j=i;j>0;j--)
{
if(num<arr[j-1])
{
//swap(arr[j],arr[j-1]);
arr[j] = arr[j-1];
}
else
{
break;
}
}
arr[j] = num;
}
}
在进入二层循环前保存arr[i],这样使得之前的交换数组元素操作(三次赋值)简化成了一次赋值,效率提高了接近三倍。而且在对本身就接近有序的数组排序时非常高效,比O(nlogn)时间复杂度的算法还要高效很多,因此O(n^2)算法在某些情况下是更好的选择。
3.冒泡排序
冒泡排序和选择排序有些相似,但在实际应用中意义不大,基本思路是:从0到n遍历(n递减),如果arr[n]>arr[n+1],则交换数组元素。这样第k次循环后top k最大值放在了数组的倒数第k个位置。代码如下
template<class T>
static void bubbleSort(T arr[],int size)
{
for(int i=size;i>0;i--)
{
for(int j=1;j<i;j++)
{
if(arr[j-1]>arr[j])
swap(arr[j-1],arr[j]);
}
}
}