《数据结构与算法分析》305页问题的实现
问题描述:
设给定N个点P1,P2,.......,PN,它们位于X轴上。Xi是Pi点的X坐标。进一步假设X1=0以及这些点从左到右给出。着N个点确定,在每一对,点间的N(N-1)/2个,形如|Xi - Xj|(i !=j)的距离。收费公路重建问题就是由这些距离重构一个点集。
作为例子,令D是距离集合,且D={1,2,2,2,3,3,3,4,5,5,5,6,7,8,10},由D=15可以知道N=6,若设X1=0,则最终的点集是X1=0,X2=3,X3=5,X4=6,X5=8,X6=10。
我参考《数据结构与算法分析——c语言描述》306-307页的算法,用二叉树存储距离(D)的值,并对二叉树进行操作,实现了这一问题,代码如下:
//头文件 #include "fatal.h"
#include <stdio.h>
#include <stdlib.h>
#define Error(str) FatalError(str)
#define FatalError(str) fprintf(stderr,"%s\n",str),exit(1)
//定义的二叉树头文件 #include "binary_tree"
#ifndef _Tree_H
struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;
typedef double ElementType;
SearchTree MakeEmpty( SearchTree T );
Position Find( ElementType X, SearchTree T );
Position FindMax( SearchTree T );
Position FindMin( SearchTree T );
SearchTree Insert( ElementType X, SearchTree T );
SearchTree Delete( ElementType X, SearchTree T );
ElementType DeleteMax( SearchTree T );
void