收费公路重建问题——回溯算法实现

这篇博客介绍了如何通过回溯算法解决收费公路重建问题。问题涉及到N个位于X轴上的点,通过给定的点间距离集合重构点集。作者参照《数据结构与算法分析——c语言描述》的算法,利用二叉树存储距离并进行操作,提供了完整的C语言代码实现。
摘要由CSDN通过智能技术生成
《数据结构与算法分析》305页问题的实现
问题描述:
        设给定N个点P1,P2,.......,PN,它们位于X轴上。Xi是Pi点的X坐标。进一步假设X1=0以及这些点从左到右给出。着N个点确定,在每一对,点间的N(N-1)/2个,形如|Xi - Xj|(i !=j)的距离。收费公路重建问题就是由这些距离重构一个点集。
         作为例子,令D是距离集合,且D={1,2,2,2,3,3,3,4,5,5,5,6,7,8,10},由D=15可以知道N=6,若设X1=0,则最终的点集是X1=0,X2=3,X3=5,X4=6,X5=8,X6=10。
我参考《数据结构与算法分析——c语言描述》306-307页的算法,用二叉树存储距离(D)的值,并对二叉树进行操作,实现了这一问题,代码如下:
//头文件  #include "fatal.h"

#include <stdio.h>
#include <stdlib.h>

#define		Error(str)        FatalError(str)
#define		FatalError(str)	  fprintf(stderr,"%s\n",str),exit(1)

//定义的二叉树头文件  #include "binary_tree"

#ifndef _Tree_H

struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;
typedef double ElementType;

SearchTree MakeEmpty( SearchTree T );
Position Find( ElementType X, SearchTree T );
Position FindMax( SearchTree T );
Position FindMin( SearchTree T );
SearchTree Insert( ElementType X, SearchTree T );
SearchTree Delete( ElementType X, SearchTree T );
ElementType DeleteMax( SearchTree T );
void
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值