机器学习框架(1)----MediaPipe

1、MediaPipe  Google 多媒体机器学习框架

            https://google.github.io/mediapipe/

   

   MediaPipe 是一款由 Google Research 开发并开源的多媒体机器学习模型应用框架。基于图形的跨平台框架,用于构建多模式(视频,音频和传感器)应用的机器学习管道。

MediaPipe 可在移动设备、工作站和服务器上跨平台运行,并支持移动 GPU 加速。使用 MediaPipe,可以将应用的机器学习管道构建为模块化组件的图形

在谷歌,一系列重要产品,如 、Google Lens、ARCore、Google Home 以及 ,都已深度整合了 MediaPipe

还支持 TensorFlow 和 TF Lite 的推理引擎(Inference Engine),任何 TensorFlow 和 TF Lite 的模型都可以在 MediaPipe 上使用。同时,在移动端和嵌入式平台,MediaPipe 也支持设备本身的 GPU 加速。

 

         MediaPipe 的核心框架由 C++ 实现,并提供 Java 以及 Objective C 等语言的支持。MediaPipe 的主要概念包括数据包(Packet)、数据流(Stream)、计算单元(Calculator)、图(Graph)以及子图(Subgraph)。数据包是最基础的数据单位,一个数据包代表了在某一特定时间节点的数据,例如一帧图像或一小段音频信号;数据流是由按时间顺序升序排列的多个数据包组成,一个数据流的某一特定时间戳(Timestamp)只允许至多一个数据包的存在;而数据流则是在多个计算单元构成的图中流动。MediaPipe 图是有向的——数据包从数据源(Source Calculator或者 Graph Input Stream)流入图直至在汇聚结点(Sink Calculator 或者 Graph Output Stream) 离开。

 

 

安装以及使用详细讲官方文档

 

应用:

(1)基于虹膜(iris)测距

         https://ai.googleblog.com/2020/08/mediapipe-iris-real-time-iris-tracking.html

    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值